Вариант №25 Из букв слова «ротор», составленного из букв разрезной азбуки, наудачу последовательно извлекаются 3 буквы и складываются в ряд. Какова вероятность того, что получится слово «тор».
Бросают два игральных кубика. Найти вероятность того, что сумма очков, выпавших на этих кубиках, равна 8.
На отрезок АВ длиной 12 см наугад ставят точку М. Найдите вероятность того, что площадь квадрата, построенного на отрезке АМ, будет между 36 см2 и 81 см2.
Студент знает 30 из 40 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете.
Среди 6 лотерейных билетов 2 выигрышных. Наудачу берут два билета. Какова вероятность того, что среди них окажется:
а) один выигрышный;
б) два выигрышных.
В лотерее 100 билетов из которых 20 выигрышных. Участник покупает два билета. Определить вероятность того, что хотя бы один билет будет выигрышным.
На карточках написаны цифры 4,5,7,8,9. Наудачу берут две карточки. Какова вероятность, что обе выбранные цифры окажутся нечетными?
По самолету производится два выстрела, вероятность попадания при каждом из них равна 0,6. При одном попадании самолет будет сбит с вероятностью 0,5, при двух – с вероятностью – 0,9. Какова вероятность того, что самолет будет сбит.
В ящик, где 10 деталей 1-го сорта и 3 детали 2-го сорта, токарь положил одну изготовленную деталь. После чего сборщик взял наудачу из ящика одну деталь, которая оказалась первого сорта. Найти вероятность того, что вложенная токарем деталь была 2-ого сорта, если он изготавливает детали только 1-го и 2-го сортов с вероятностями 0,95 и 0,5 соответственно.
Вероятность рождения мальчика равна 0,515. Найти вероятность того, что из 20 новорожденных будет 11 мальчиков.
Всхожесть семян ржи составляет 90%. Найти вероятность того, что из 10000 посеянных семян взойдет 900.
Для данного стрелка вероятность попадания в мишень при одном выстреле равна 0,9. Произведено 1000 выстрелов по мишени. Найти вероятность того, что число попаданий будет менее 80 и не более 95.
Определить надежность схемы, если Pi – надежность i – го элемента