Функции Определение функции, способы задания функции. Функция



бет3/4
Дата03.12.2023
өлшемі0,66 Mb.
#133268
1   2   3   4
Байланысты:
math

Правило линейности: Производная линейной комбинации функций равна линейной комбинации их производных. Например, если f(x) и g(x) - дифференцируемые функции, и a и b - константы, то производная функции h(x) = af(x) + bg(x) равна h'(x) = af'(x) + bg'(x).


Правило суммы и разности: Производная суммы или разности двух функций равна сумме или разности их производных. Если f(x) и g(x) - дифференцируемые функции, то производная функции h(x) = f(x) + g(x) равна h'(x) = f'(x) + g'(x), и производная функции h(x) = f(x) - g(x) равна h'(x) = f'(x) - g'(x).


Правило произведения: Производная произведения двух функций можно найти с помощью формулы (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x), где f(x) и g(x) - дифференцируемые функции.


Правило частного: Производная частного двух функций можно найти с помощью формулы (f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2, где f(x) и g(x) - дифференцируемые функции, и g(x) не равна 0.



  • Производная сложной функции:

Производная сложной функции находится по формуле, называемой правилом цепочки, которая гласит, что производная сложной функции равна произведению производной внешней функции и производной внутренней функции.



  • Логарифмическое дифференцирование:

Логарифмическое дифференцирование – это метод, который позволяет находить производные функций, содержащих логарифмы, путем применения свойств логарифмов и их производных.



  • Определение дифференциала:

Дифференциал функции в точке – это приращение функции, которое выражается через приращение аргумента и производную функции в данной точке.





Достарыңызбен бөлісу:
1   2   3   4




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет