Rо ≈ ( 4*U2 / I2п - 1/(2*π*F*Cо)2 )0,5 Такой прибор можно одновременно использовать и как омметр с последовательной схемой для приближённого измерения (на частоте F) активных сопротивлений при условии выполнения отсчёта по специальной шкале, сходной со шкалой ёмкостей, но обратного расположения.
Рис. 4. Последовательная схема многопредельного микрофарадметра с измерителем напряжения При наличии электронного вольтметра переменного тока с большим входным сопротивлением Rв за основу микрофарадметра может быть принята схема, приведённая на рис. 4. Переменное напряжение U, стабилизированное цепочкой R1, Д1, Д2 и равное примерно пределу измерения Uп вольтметра V, при замыкании входных зажимов воздействует на вольтметр. Регулировкой чувствительности последнего добиваются отклонения стрелки его измерителя до конца шкалы. При включении в схему испытуемого конденсатора Сx образуется делитель напряжения Rо, Сx, с которого к вольтметру подводится напряжение Ux, тем меньшее, чем меньше ёмкость Сx. Выбранное среднее значение Со шкалы ёмкостей будет достигаться при сопротивлении Rо ≈ 1/(11*F*Cо). Переключением резисторов Rо различных номиналов осуществляется смена пределов измерений ёмкостей. Минимально возможное значение ёмкости Со ограничивается предельно допустимым значением сопротивления Rо ≈ 0,1 Rо. Например, при Rо = 1 МОм и частоте F = 50 Гц получаем ёмкость Со ≈ 1/(11*F*Rо) = 1820 пФ.
Микрофарадметр в рассматриваемом режиме его работы имеет крайние отметки шкалы ёмкостей «0» и «∞». Однако если использовать в приборе чувствительный милливольтметр с пределом измерения Uп << U, допускающий кратковременную случайную перегрузку до напряжения, равного U, то верхние пределы измерения прибора могут быть ограничены выбранными значениями ёмкостей Сп, которым должны соответствовать сопротивления