№2 Конустың биіктігі 4см. Табанының диаметрі 6см. Бүйір бетінің ауданын табыңыз.
CH=4см
AB=6см
R=3cм
Sб.б= RL
L2=H2+R2
L2=16+9=25
L=5
Sб.б= *3*5=15
№3 Конустың биіктігі табанының радиусына тең. Көлемі V=9.Жасаушысын табыңыз.
CH=R=x
V=9.
L-?
V=R2H
R2H=9
X3=27
X=3
L2=H2+R2
L2=9+9=18
L=3
№4 Конустың табанының радиусы 3см, ал жасаушысы табан жазықтығына 450 бұрыш жасай көлбеген. Конустың көлемін және бүйір бетінің ауданын табыңыз.
R=AH=3см
0
V, Sб.б-?
СH=3см
L2=H2+R2
L2=(3)2+(3)2
L2=36
L=6
V=R2H
V=(3)3=18
Sб.б= RL
Sб.б= *3*6=18
№5 Конустың көлемі 9см3 Егер оның осьтік қимасы тең қабырғалы үшбұрыш болса, конустың биіктігін табыңыз.
V=R2H
V=9см3
9см3 =R2H
R=x, CB=2x
CH2=4x2-x2=3x2
CH=x
*x2*x=9
X3=27
X=3
CH=x=3
№6 Осьтік қимасы тең бүйірлі тік бұрышты үшбұрыш болатын конус берілген. Тік бұрышты үшбұрыштың гипотенузасы 6см-ге тең болса, бүйір бетінің ауданын табыңыз.
AB=6
R=3
H=3
L2=H2+R2
L2=(3)2+(3)2
L2=36
L=6
Sб.б= RL
Sб.б=*3*6=18
№7
Конустың жасаушысы табан жазықтығына 300бұрыш жасай көлбеген және 8 см-ге тең. Осьтік қимасының ауданын табыңыз.
0
AC=8 см
SABC-?
SABC=AB*CH
CH=AC
CH=*8=4
AH2=AC2-CH2
AH2=64-16=48
AH=4
AB=8
SABC=AB*CH=*8*4=16
№8 Тең бүйірлі тік бұрышты үшбұрыш өзінің катетінен айналдырылған. Гипотенузасы 3см-ге тең болса, шыққан конустың көлемін табыңыз.
AC=3см
AC2=AH2+CH2
2AH2=18
AH2=9
AH=3
V=R2H
V=*32*3=9
№9 Конустың биіктігі 15cм, ал көлемі 320 см3. Табанының радиусын табыңыз.
V=R2H
V=320 см3
H=15см
R2 *15=320
R2=64
R=8
№10
Жасаушысы L-ге, ал табанының радиусы R-ге тең конус берілген. Бір жағы конус табанында, ал қарсы жатқан жағының төбелері оның бүйір бетінде жататын конусқа іштей сызылған кубтың қырын табыңыз.
№14 Пирамиданың табаны-қабырғасы а-ға , сүйір бұрышы -ға тең ромб. Пирамидаға жасаушысы табан жазықтығымен бұрыш жасайтын конус іштей сызылған. Конустың көлемін табыңыз.
V=Sтаб *SO
=sin
h=a sin
r=h= a sin
SO=sintg
Sтаб=r2=(a sin)2 V= *()2a2sin2 *sintg=sin3tg
№15 Конустың биіктігі 3см, табанының радиусы 5 см.
Төбесі арқылы өтетін биіктігімен 300жасайтын қиманың ауданын табыңыз.
SO=3см
R=5 см.
0
SSKL=KL*SP
SP=2PO
SP=2x, PO=x
SO2=SP2-PO2
3x2=27
X2=9
X=3
SP=6, PO=3 KP==4 KL=2KP=8
SSKL=KL*SP=*8*6=24 см2
№16 Конустың биіктігі 4 см. Конус бүйір бетінің жазбасының центрлік бұрышы 1200.Конустың көлемін табыңыз.
CH=4
=
L=3R
H=
H=2R
2R=4 R=2
V=R2H
V=*22*4 =
№17 Конустың бүйір бетінің ауданы табанының ауданынан 2 есе артық болса, жазбасының бұрышын радианмен табыңыз.
Sб.б= RL
Sб.б=2Sтаб
RL=2R2
L=2R
=
=1800
№ 18 Конустың көлемі V –ға тең. Конусқа іштей сызылған дұрыс төртбұрышты пирамиданың көлемін табыңыз.
V=R2H
H=
Vпир=Sтаб*H
R-төртбұрышқа сырттай сызылған шеңбердің радиусы
a-төртбұрыштың қабырғасы
a=R
Sтаб=a2=(R)2=2R2
Vпир =Sтаб*H=*2R2*H=*2R2*=
№19
Радиусы 6 см-ге тең жарты дөңгелек конусқа айналдырылған. Кoнустың көлемі неге тең?
С=R=6
H=
H=
C=2R
2R=6
R=3
V=R2H=*9*3=9
№20
Конустың осьтік қимасы тік бұрышты үшбұрыш.P=16(2+) , толық бетінің ауданы неге тең?
AC=BC=L, AB=2R
AC2+BC2=AB2
2L2=4R2
L=R
P=2R+2L
2R+2L=16(2+)
R+L=8(2+)
R+R=8(2+)
R(1+)=8(1+)
R=8
L=*8=16
Sт.б=R(R+L)= *8*(8+16)= *8*8(1+)=128(1+)
№21
Қиық конустың табан радиусы 7 м және 4 м. Жасаушысы табанына 600бұрышпен көлбеген.Жасаушысын табыңыз.
OC=4 м.
ND=7 м
0
DC-?
DH=DN-HN=7-4=3м
=cos600 DC=3: =6м
№22 Қиық конустың табанының диаметрі 3м, 6м, биіктігі 4 м. Жасаушысын табыңыз.
AD=6, BC=3, CH=4, DC-?
HD=(AD-BC)= *(6-3)=1,5
DC2=CH2+HD2
DC2=16+2,25=18,25
DC=
№23 Қиық конустың табанының радиустары 10 см және 4 см, ал жасаушысы табан жазықтығына 450 бұрыш жасай көлбеген. Конустың осьтік қимасының ауданын табыңыз.
ND=10, OC=4, 0
SABCD-?
HD=ND-OC=10-4=6
HD=CH=6
S=(AD+BC) *CH=(20+8)*6=84
№24
Конустың көлемі 375 см3. Биіктігі 5 см.Конус төбесінен 2 см қашықтықтан өтетін және де оның табанына параллель жазықтық қияды. Пайда болған қиық конустың көлемін табыңыз.