Который нечувствителен к изменению температуры в диапазоне от 20 до 100



бет3/3
Дата11.12.2023
өлшемі243,5 Kb.
#137774
түріИсследование
1   2   3
Әдебиеттер
[1] T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Amer.
A, vol. 13, pp. 296–313, 1996.
[2] G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-gratinginduced
coupling to cladding modes for accurate refractometry,” Meas.
Sci. Technol., vol. 12, pp. 765–770, 2001.
[3] Caucheteur C., Mégret P. Demodulation technique for weakly tilted fiber Bragg grating refractometer //IEEE Photonics Technology Letters. – 2005. – Т. 17. – №. 12. – С. 2703-2705
[4] S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed
fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt., vol.
41, pp. 631–636, 2002.
[5] Huy M. C. P. et al. Tilted fiber Bragg grating photowritten in microstructured optical fiber for improved refractive index measurement //Optics Express. – 2006. – Т. 14. – №. 22. – С. 10359-10370.
[6] Wang F. et al. Linear-response and simple hot-wire fiber-optic anemometer using high-order cladding mode //Optics Express. – 2020. – Т. 28. – №. 18. – С. 27028-27036.
[7] Chehura E., James S. W., Tatam R. P. Temperature and strain discrimination using a single tilted fibre Bragg grating //Optics Communications. – 2007. – Т. 275. – №. 2. – С. 344-347.
[8] Miao Y., Liu B., Zhao Q. Simultaneous measurement of strain and temperature using single tilted fibre Bragg grating //Electronics Letters. – 2008. – Т. 44. – №. 21. – С. 1242-1243.
[9] Rahimi S. et al. Temperature and strain sensors based on integration of tilted fiber Bragg gratings with a free spectral range matched interrogation system //IEEE Sensors Journal. – 2009. – Т. 9. – №. 7. – С. 858-861.
[10] Zhao C. L. et al. Studies on strain and temperature characteristics of a slanted multimode fiber Bragg grating and its application in multiwavelength fiber Raman ring laser //Journal of lightwave technology. – 2006. – Т. 24. – №. 6. – С. 2394.
[11] Chen X. et al. In-Fiber Twist Sensor Based on a Fiber Bragg Grating With 810 Tilted Structure //IEEE photonics technology letters. – 2006. – Т. 18. – №. 24. – С. 2596-2598.
[12] Zhao C. L. et al. Simultaneous temperature and refractive index measurements using a 3 slanted multimode fiber Bragg grating //Journal of lightwave technology. – 2006. – Т. 24. – №. 2. – С. 879.
[13] Caucheteur C. et al. External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses //IEEE Sensors Journal. – 2008. – Т. 8. – №. 7. – С. 1330-1336.
[14] Suo R. et al. 800 nm WDM interrogation system for strain, temperature, and refractive index sensing based on tilted fiber Bragg grating //IEEE Sensors Journal. – 2008. – Т. 8. – №. 7. – С. 1273-1279.
[15] Mou C. et al. Thermal insensitive optical liquid level sensor based on excessively tilted fibre Bragg grating //Asia Optical Fiber Communication and Optoelectronic Exposition and Conference. – Optical Society of America, 2008. – С. SuR5.
[16] Miao Y. et al. Temperature‐insensitive refractive index sensor based on tilted fiber Bragg grating //Microwave and Optical Technology Letters. – 2009. – Т. 51. – №. 2. – С. 479-483.
[17] Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).
[18] Alberto N. J. et al. Three-parameter optical fiber sensor based on a tilted fiber Bragg grating //Applied Optics. – 2010. – Т. 49. – №. 31. – С. 6085-6091.

  1. Shen C. et al. Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG //Optics letters. – 2020. – Т. 45. – №. 10. – С. 2776-2779.

  2. Tomyshev K. A. et al. High-precision data analysis for TFBG-assisted refractometer //Sensors and Actuators A: Physical. – 2020. – Т. 308. – С. 112016.

  3. Wen H. Y. et al. Comparison of the sensing mechanisms and capabilities of three functional materials surface-modified TFBG sensors //AIP Advances. – 2020. – Т. 10. – №. 6. – С. 065319.

  4. Moreno Y. et al. Hybrid tilted fiber gratings-based surface plasmon resonance sensor and its application for hemoglobin detection //Chinese Optics Letters. – 2020. – Т. 18. – №. 10. – С. 100601.

  5. Gang T., Zhang X., Sun R. Tilted fiber Bragg grating fixed in a polypropylene tube for ultrasonic sensing and imaging of simulated geological models //Optics & Laser Technology. – 2021. – Т. 140. – С. 107075.

  6. Lobry M. et al. Refractometric sensing with plasmonic tilted Bragg gratings in different fiber types //Optical Sensing and Detection VI. – International Society for Optics and Photonics, 2020. – Т. 11354. – С. 113542W.

  7. Ainur K. et al. Interrogation system of signals from rotation sensors using tilted fiber Bragg gratings //Cogent Engineering. – 2020. – Т. 7. – №. 1. – С. 1743405.

  8. Fazzi L. et al. A simultaneous dual-parameter optical fibre single sensor embedded in a glass fibre/epoxy composite //Composite Structures. – 2021. – С. 114087.

  9. Chen X., Nan Y., Guo T. Study on a plasmonic tilted fiber Bragg grating sensor for biomolecule AdoHcy detection //Sixth Symposium on Novel Optoelectronic Detection Technology and Applications. – International Society for Optics and Photonics, 2020. – Т. 11455. – С. 114553D.

  10. Lobry M. et al. HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings //Biomedical optics express. – 2020. – Т. 11. – №. 9. – С. 4862-4871.

  11. Wang F. et al. High Sensitivity Humidity Detection Based on Functional GO/MWCNTs Hybrid Nano-Materials Coated Titled Fiber Bragg Grating //Nanomaterials. – 2021. – Т. 11. – №. 5. – С. 1134.

  12. Duan Y. et al. 4-Mercaptopyridine Modified Fiber Optic Plasmonic Sensor for Sub-nM Mercury (II) Detection //Photonic Sensors. – 2021. – С. 1-8.

  13. Cai S. et al. Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria //Optics Express. – 2020. – Т. 28. – №. 13. – С. 19740-19749.

  14. Zhao J., Wang H., Sun X. Study on the performance of polarization maintaining fiber temperature sensor based on tilted fiber grating //Measurement. – 2021. – Т. 168. – С. 108421.

  15. Lobry M. et al. Multimodal plasmonic optical fiber grating aptasensor //Optics express. – 2020. – Т. 28. – №. 5. – С. 7539-7551.

  16. Udos W. et al. Label-free surface-plasmon resonance fiber grating biosensor for Hand-foot-mouth disease (EV-A71) detection //Optik. – 2021. – Т. 228. – С. 166221.

  17. Kipriksiz S. E., Yücel M. Tilted fiber Bragg grating design for a simultaneous measurement of temperature and strain //Optical and Quantum Electronics. – 2021. – Т. 53. – №. 1. – С. 1-15.

  18. Bandyopadhyay S. et al. Highly efficient free-space fiber coupler with 45° tilted fiber grating to access remotely placed optical fiber sensors //Optics express. – 2020. – Т. 28. – №. 11. – С. 16569-16578.

  19. Dong X. et al. Tilted fiber Bragg gratings: Principle and sensing applications //Photonic Sensors. – 2011. – Т. 1. – №. 1. – С. 6-30.

  20. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonte, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, “Tilted fiber Bragg grating photowritten in microstructured optical fiber for improved refractive index measurement,” Opt. Express, vol. 14, no. 22, pp. 10359-10370, 2006.

  21. L. Brilland, D. Pureur, J. F. Bayron, and E. Delevaque, “Slanted gratings UV-written in photosensitive cladding fibre,” Electron. Lett., vol. 35, no. 3, pp. 234-236, 1999.

  22. J. M. Battiato and R. K. Kostuk, “45°slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett., vol. 38, no. 22, pp. 1323-1324, 2002.

  23. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1352-1354, 2000.

  24. A. Bouzid and M. A. G. Abushagur, “Scattering analysis of slanted fiber gratings,” Appl. Opt., vol. 36, no. 3, pp. 558-562, 1997.

  25. T. Erdogan, “Cladding-mode resonances in shortand long period fiber grating filters,” J. Opt. Soc. Am. A, vol. 14, no. 8, pp. 1760-1773, 1997.

  26. K. S. Lee and T. Erdogan, “Transmissive tilted gratings for LP01-to-LP11 mode coupling,” IEEE Photon. Technol. Lett., vol. 11, no. 10, pp.1286-1288, 1999.

  27. T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett., vol. 20, no. 18, pp.1838-1840, 1995.

  28. Y. Li, M. Froggatt and T. Erdogan, “Volume current method for analysis of tilted fiber gratings,” IEEE J. Lightwave Technol., vol. 19, no. 10, pp. 1580-1591, 2001.

  29. R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B, vol. 22, no. 5, pp. 962-975, 2005.

  30. C. Jáuregui and J. M. Lo’pez-Higuera, “Near-field theoretical model of radiation from a uniform-tilted fiber Bragg grating,” Microw. Opt. Technol Lett., vol. 37, no. 2, pp. 124-127, 2003.

  31. Y. Li and T. G. Brown, “Radiation modes and tilted fiber gratings,” J. Opt. Soc. Am. B, vol. 23, no. 8, pp. 1544-1555, 2006.


Достарыңызбен бөлісу:
1   2   3




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет