110
М. Э. Абрамян. Электронный задачник Programming Taskbook 4.5
Recur27. Дано дерево глубины
N (
N — четное), каждая внутренняя вершина
которого имеет 2 непосредственных потомка:
A с весом 1 и
B с весом
−1.
Корень дерева
C имеет вес 0. Записать в текстовый файл с данным именем
все пути от корня к листьям, удовлетворяющие следующему условию:
суммарный вес элементов пути равен 0. Порядок перебора путей такой
же, как в задании Recur25.
Recur28. Дано дерево глубины
N того же типа, что и в задании Recur27.
Записать в текстовый файл с данным именем все пути от корня к листьям,
удовлетворяющие следующему условию: суммарный вес элементов для
любого начального отрезка пути неотрицателен. Порядок перебора путей
такой же, как в задании Recur25.
Recur29. Дано дерево глубины
N, каждая внутренняя вершина которого имеет
3 непосредственных потомка:
A с весом 1,
B с весом 0 и
C с весом
−1.
Корень дерева
D имеет вес 0. Записать в текстовый файл с данным име-
нем все пути от корня к листьям, удовлетворяющие следующим условиям:
суммарный вес элементов для любого начального отрезка пути неположи-
телен, а суммарный вес всех элементов пути равен 0. Порядок перебора
путей такой же, как в задании Recur25.
Recur30. Дано дерево глубины
N того же типа, что и в задании Recur29. За-
писать в текстовый файл с данным именем все пути от корня к листьям,
удовлетворяющие следующим условиям: никакие соседние элементы пу-
ти не обозначаются одной и той же буквой, а суммарный вес всех эле-
ментов пути равен 0. Порядок перебора путей такой же, как в задании
Recur25.
Достарыңызбен бөлісу: