Вторичные посредники - это мелкие, способные к быстрому перемещению молекулы или ионы, передающие сигнал внутри клетки. Этим они отличаются от "первичных посредников" – медиаторов и гормонов, передающих информацию от клетки к клетке. Наиболее известным вторичным посредником является цАМФ (циклическая аденозин-моно-фосфорная кислота), образуемая из АТФ с помощью фермента аденилатциклазы. Похожа на него цГМФ (гуанозин-моно-фосфорная кислота). Другими важнейшими вторичными посредниками являются инозитолтрифосфат и диацилглицерол, образуемые из компонентов клеточной мембраны. Чрезвычайно велика роль Са2+, входящего в клетку снаружи через ионные каналы или высвобождающегося из особых мест хранения внутри клетки ("депо" кальция). В последнее время много вниманию уделяется очень короткоживущему вторичному посреднику NO (оксиду азота). Показано, что NO способен передавать сигнал не только внутри клетки, но и между клетками (в том числе от постсинаптического нейрона к пресинаптическому).
Заключительный шаг в передаче химического сигнала – воздействие вторичного посредника на хемочувствительный ионный канал. Это воздействие протекает либо непосредственно, либо через дополнительные промежуточные звенья (например, ферменты). В любом случае происходит открывание ионного канала и развитие ВПСП либо ТПСП. Продолжительность и амплитуда их первой фазы будет определяться количеством вторичного посредника, которое, в свою очередь, зависит от количества выделившегося медиатора и длительности его взамодействия с рецептором.
Таким образом, механизм передачи нервного стимула, используемый метаботропными рецепторами, включат в себя несколько последовательных этапов. На каждом из них возможна регуляция (ослабление либо усиление) сигнала, что делает реакцию постсинаптической клетки более гибкой и адаптированным к текущим условиям. Вместе с тем, это же приводит к замедлению процесса передачи информации. Вот почему в ходе эволюции возникла потребность в более быстром пути проведения сигналов, в результате чего появились ионотропные рецепторы.
В случае ионотропного рецептора (см. рис. 13) чувствительная молекула содержит не только активный центр для связывания медиатора, но также ионный канал. Воздействие медиатора на рецептор приводит к практически мгновенному открыванию канала и развитию постсинаптического потенциала. По такому принципу работают, например, нервно-мышечные синапсы.
Инактивация является заключительным этапом жизненного цикла медиатора. Смысл этой стадии состоит в прекращении его действия на рецептор (прерывание сигнала). Действительно, ПД, распространяющиеся по мембране нервных клеток, являются дискретными, ограниченными во времени событиями. Для адекватной передачи сигнала с нейрона на нейрон эта дискретность должна сохраняться. Соответственно, синаптическая передача также должна быть ограничена во времени и иметь механизмы не только запуска, но и прекращения.
В простейшем случае инактивация осуществляется прямо в синаптической цели. При этом фермент эффективно разрушает все свободно плавающие молекулы медиатора. Конечно, часть из них все же успевает достичь постсинаптической мембраны. Однако и их связь с активными центрами рецепторов не является абсолютно стабильной. Дело в том, что взаимодействие лиганд-рецептор является обычно вероятностным. Это значит, что реально молекула медиатора находится в связи с активным центром, скажем, 2/3 времени, но 1/3 – свободно плавает в синаптической щели. Именно в этот момент она и может быть инактивирована.
Второй способ инактивации предполагает всасывание медиатора из синаптической щели с помощью особых белков-насосов. Эти белки могут находиться либо на мембранах глиальных клеток либо на пресинаптической мембране. В первом случае медиатор быстро переносится внутрь глиальных клеток, после чего разрушается специализированным ферментом. Во втором случае медиатор возвращается в пресинаптическое окончание (обратный захват). В дальнейшем он также может быть разрушен, но может и повторно загружаться в пустые везикулы. Последний вариант позволяет наиболее экономно расходовать те медиаторы, синтез которых связан для нейрона с определенными проблемами (мало предшественника, длительная цепочка реакций и т.п.).
Скорость процесса инактивации определяет общее время воздействия медиатора на рецептор. Именно от этого в конечном итоге зависит амплитуда постсинаптических потенциалов, а, значит, запуск ПД и продолжение проведения сигнала по нейронной сети. При повреждении элементов системы инактивации мы наблюдаем значительное увеличение эффективности синаптической передачи. Действительно, в этом случае выделившийся медиатор будет значительно дольше воздействовать на рецепторы, и амплитуда ВПСП либо ТПСП заметно возрастет.
Все нейроны делятся на типы в зависимости от медиатора, который они вырабатывают. При этом к названию медиатора прибавляется “-ергический”. Так, ацетилхолинергические нейроны, синтезирующие ацетилхолин, образуют ацетилхолинергическую систему, нейроны, синтезирующие глутаминовую кислоту – глутаматергическую систему и т.д.
Нейрон может быть связан с нейронами как своей медиаторной системы, так и других систем. Дело усложняется тем, что, как правило, рецепторов к одному медиатору не один тип, а два и более, причем для одного медиатора могут существовать как ионотропные, так и метаботропные рецепторы.
Вещества, влияющие на различные этапы жизненного цикла медиаторов, имеют огромное значение для жизни человека. Они образуют группу так называемых психотропных препаратов – соединений, влияющих на различные аспекты деятельности мозга: общий уровень активности, память, эмоциональные переживания и др. При этом наиболее часто используются вещества, изменяющие взаимодействие рецептора и медиатора, а также влияющие на хемочувствительные ионные каналы.
Вводя в организм молекулы, сходные по структуре с медиатором, можно наблюдать, как они соединяются с активными центрами соответствующих рецепторов и возбуждают их. В результате эффект применяемого препарата будет аналогичен действию самого медиатора. Вещества такого рода называют агонистами медиатора. Влияние агонистов на синапс нередко оказывается очень длительным и эффективным. Это объясняется тем, что прочность их связывания с рецепторами нередко больше, чем у медиатора, а системы инактивации не способны быстро удалить агонист из синаптической щели.
В более сложном случае вводимые извне молекулы лишь частично похожи на медиатор. Тогда, соединяясь с активными центрами рецепторов, они будут их занимать (т.е. прекращать к ним доступ медиатора; конкурировать с ним), но не будут возбуждать рецептор. В результате эффект применяемого препарата будет противоположен действию медиатора. Вещества такого рода называют конкурентными антагонистами (блокаторами) медиатора. Существует также понятие неконкуретного антагониста. В этом варианте вводимый препарат нарушает действие медиатора, блокируя хемочувствительные ионные каналы.
Часть агонистов и антагонистов медиаторов являются веществами природного происхождения. Их существование – результат длительных эволюционных процессов, в ходе которых одни живые организмы (прежде всего, растения) "изобретали" вещества, защищающие их от поедания другими организмами. Природными психотропными препаратами являются и яды животных-охотников (змеи, пауки и т.п.).
Вторая часть агонистов и антагонистов – синтетические соединения, создаваемые человеком. В ходе их разработки химикам и фармакологам приходится учитывать целый ряд требований. Во-первых, в структуре такого вещества должен присутствовать "ключевой" участок, соответствующий молекуле медиатора. Во-вторых, такой препарат должен быть устойчив к действию систем инактивации. В-третьих, он должен проникать через барьеры организма – гемато-энцефалический и, желательно, кишечный. Только в этом случае можно достичь мозга при введении в организм в виде таблетки либо инъекции. В настоящее время агонисты и антагонисты медиаторов (а также соединения, влияющие на синаптическую передачу другими путями) широко применяются в клинике. Вместе с тем, в больших дозах многие из них являются наркотиками и ядами, что также свидетельствует о необходимости их серьезного изучения.
Медиаторы очень разнообразны по своей химической структуре. В связи с этим среди них выделяют группы моноаминов (производных аминокислот), аминокислот, пептидов (цепочек аминокислот). Своеобразную химическую природу имеет ацетилхолин, с которого мы и начнем обзор основных медиаторных систем и связанных с ними психотропных препаратов.
5.2. Ацетилхолин
Ацетилхолин был первым из открытых медиаторов. По своему химическому строению он представляет собой соединение двух молекул – азотсодержащего холина и остатка уксусной кислоты. Синтез ацетилхолина осуществляется в основном в пресинаптических окончаниях с помощью фермента холинацетилтрансферазы. Затем медиатор переносится в пустые везикулы и хранится в них до момента выброса.
Ацетилхолин в качестве медиатора работает в трех функциональных блоках нервной системы. Это нервно-мышечные синапсы, периферическая часть вегетативной нервной системы и относительно немногочисленные области ЦНС.
Ацетилхолин является медиатором мотонейронов нервной системы, локализованных в передних рогах серого вещества спинного мозга и двигательных ядрах черепных нервов. Их аксоны направляются к скелетным мышцам и, разветвляясь, образуют с ними нервно-мышечные синапсы. При этом один аксон может устанавливать контакт с 5-5000 мышечных волокон; но каждое мышечное волокно управляется только одним синапсом. Размер нервно-мышечных синапсов в десятки раз больше, чем синапсов в ЦНС. Пришедший по аксону мотонейрона даже одиночный ПД вызывает выделение в синапсе очень значительного количества ацетилхолина. В результате развивающаяся на постсинаптической мембране деполяризация оказывается настолько велика, что всегда запускает ПД мышечной клетки. Этот ПД, в свою очередь, приводит к выбросу Са2+ из каналов эндоплазматической сети, активации двигательных белков и сокращению поперечнополосатого волокна.
В вегетативной нервной системе ацетилхолин в качестве медиатора вырабатывается нейронами, находящимися в ЦНС, а также в ганглионарных клетках парасимпатической части. Следовательно, при помощи этого медиатора передаются сигналы внутри вегетативных ганглиев, а также парасимпатические влияния непосредственно на внутренние органы.
В ЦНС ацетилхолин вырабатывается частью нейронов ретикулярных ядер моста, интернейронами базальных ганглиев (точнее, полосатого тела) и некоторых других локальных зон. Рассматривается роль этого медиатора в регуляции уровня бодрствования, системах памяти, двигательных системах.
Выделяясь из пресинаптического окончания, ацетилхолин действует на постсинаптические рецепторы. Рецепторы эти не однородны и различаются как местом локализации, так и рядом существенных свойств. Выделено два их типа, названных по своим агонистам. Первый тип, помимо ацетилхолина, возбуждается под действием алкалоида табака никотина (никотиновые рецепторы или Н-холинорецепторы). Второй тип активируется ацетилхолином и токсином мухомора мускарином (мускариновые рецепторы или М-холинорецепторы). Рассмотрим их подробнее.
Достарыңызбен бөлісу: |