Сборник предназначен студентам, интернам, резидентам, магистрантам



Pdf көрінісі
бет99/333
Дата18.11.2023
өлшемі4,77 Mb.
#124365
түріСборник
1   ...   95   96   97   98   99   100   101   102   ...   333
Байланысты:
sbornikkonferenczii19iyunya2023

 
Benefits 
 
The application of Machine Learning (ML) in Clinical Decision Support Systems 
(CDSS) has the potential to benefit various stakeholders in healthcare. Here are three 
main beneficiaries of ML in CDSS: 
1.
Healthcare Providers: ML in CDSS can assist healthcare providers, such as 
physicians, nurses, and clinicians, in making more accurate and informed decisions. 
ML algorithms can analyze large volumes of patient data, including medical records, 
lab results, imaging data, and research findings, to provide personalized 
recommendations, risk assessments, and treatment options. By leveraging ML, 
healthcare providers can enhance diagnostic accuracy, identify potential risks or 
complications, and optimize treatment plans, leading to improved patient outcomes 
and quality of care. 
2.
Patients: ML in CDSS can empower patients by providing them with 
personalized insights and recommendations. ML algorithms can analyze individual 
patient data, including medical history, genetic information, lifestyle factors, and 
symptom patterns, to offer tailored guidance, preventive measures, and treatment 
options. Patients can benefit from ML-based CDSS by receiving timely 
interventions, improved disease management strategies, and increased involvement 
in their own healthcare decisions. This can lead to better patient engagement, 
satisfaction, and overall health outcomes. 
3.
Healthcare Systems and Institutions: ML in CDSS can have a positive impact 
on healthcare systems and institutions as a whole. By leveraging ML algorithms to 
analyze population-level data, healthcare systems can identify patterns, trends, and 


106 
risk factors associated with specific diseases or conditions. This can aid in proactive 
public health interventions, resource allocation, and strategic planning. ML-based 
CDSS can also help in optimizing healthcare workflows, reducing medical errors, 
and improving efficiency in healthcare delivery. By harnessing the power of ML, 
healthcare systems can work towards achieving cost-effective, patient-centered care 
and population health management. 
Overall, the integration of ML into CDSS holds the potential to revolutionize 
clinical decision-making, enhance patient care, and optimize healthcare systems. It 
can empower healthcare providers, patients, and healthcare institutions with data-
driven insights and personalized recommendations, leading to improved healthcare 
outcomes and a more efficient and effective healthcare ecosystem. 


Достарыңызбен бөлісу:
1   ...   95   96   97   98   99   100   101   102   ...   333




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет