Алгоритмические модели воспроизводят пошаговый процесс численного решения уравнений, представляющих математическую модель исследуемого объекта, и обычно реализуются в форме программы для ЭВМ. Результаты исследования на алгоритмических моделях всегда являются приближенными. Применение компьютеров делает алгоритмические модели наиболее универсальными. С их помощью могут быть воспроизведены любые другие математические модели.
Математические модели технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и с возможностями ЭВМ оперировать этими моделями. Как правило, решить все задачи в рамках некоторого единого описания, невозможно. Обычно, требуется структурирование математических моделей на
несколько иерархических уровней, отличающихся детальностью описания технического объекта.
Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако большинство математических моделей технических объектов можно отнести к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями. В зависимости от места в иерархии описания математические модели делятся на модели, относящиеся к микро-, макро- и метауровням [29].
Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывном пространстве и времени. Типичные ММ на микроуровне – дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрические потенциалы и напряжения, давления и температуры и т.п. Возможности применения ММ в ДУЧП ограничены отдельными деталями. Попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.
На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время , а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости в механических системах, напряжения и токи в электрических системах, давления и расходы жидкостей и газов в гидравлических и пневматических системах и т.п. Макроуровень является наиболее характерным для исследования технических систем.
Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10000, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.
На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние фазовые переменные элементы, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, укрупненное представление элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем размерность ММ на макроуровне.
Достарыңызбен бөлісу: |