Редакционно-издательским советом Томского политехнического университета Издательство Томского политехнического университета 2013


Классификация методов математического моделирования применительно к этапу построения математической модели



бет14/64
Дата10.05.2022
өлшемі3,21 Mb.
#33886
1   ...   10   11   12   13   14   15   16   17   ...   64
Байланысты:
Моделирование технических сис

1.4. Классификация методов
математического моделирования применительно
к этапу построения математической модели


В современной науке существуют два основных подхода к построению математических моделей систем [4, 29]. Первый их них – это широко распространенный классический подход, который базируется на раскрытии явлений, происходящих внутри рассматриваемой системы.

Построение модели начинается с использования основных физических законов (законов Ньютона, Максвелла или Кирхгофа, законов сохранения массы, энергии, кинетического момента и т.д.) для описания исследуемого объекта, являющегося, например, механическим или электрическим. Из этих законов следуют различные соотношения между рассматриваемыми переменными и, в частности, связывающие их обыкновенные дифференциальные уравнения, дифференциальные уравнения в частных производных, разностные уравнения.

Базой данного подхода к построению математической модели являются дисциплины, относящиеся к соответствующим предметным областям – теоретическая механика при построении моделей механических объектов, электротехника – при построении моделей электрических цепей и т.д.

Второй подход, характерный для методологии кибернетики и получивший развитие в трудах ее основоположников [9, 32], основывается на рассмотрении системы как некоторого объекта, у которого доступными для наблюдения являются только входные и выходные переменные. Его часто называют кибернетическим моделированием. Данный подход сводит изучение системы к наблюдению ее реакций при известных воздействиях, поступающих на вход системы. Модель системы строится при этом как описание некоторого преобразователя вектора входных переменных в вектор выходных переменных. Такая кибернетическая модель сохраняет только подобие векторов входных и выходных переменных оригинала и модели, полностью игнорируя физический смысл и внутреннюю структуру объекта.

Следует отметить, что анализ методов моделирования с точки зрения построения модели может описываться в различных терминах. Выделение классического и кибернетического подхода лишь один из вариантов. Иначе можно говорить о теоретических и экспериментальных моделях. Наиболее же информативным представляется подход к получению модели с позиций «черного» и «белого» ящиков. Его достоинство в том, что он позволяет естественным образом ввести понятие «серого» ящика. Действительно, в реальных условиях редко бывает, что об объекте ничего неизвестно, кроме реакций. Или, что об объекте известно все. Обычно объект представляет собой «серый» ящик той или иной степени «серости». Эта серость определяется той информацией об объекте, которой владеет исследователь. Может быть известна, например, структура объекта (модели), ориентировочный порядок модели, математическая схема, которую следует применять, линейность и т.д.

Соответственно, разная степень «серости» выливается в разные методы кибернетического моделирования.



Основой кибернетического моделирования являются такие разделы математической теории систем как методы идентификации объектов [32] и методы реализации временных рядов [5].

Целью решения задач идентификации является построение по входным и выходным сигналам изучаемой системы эквивалентной ей системы из заданного класса. Эквивалентность обычно понимается в смысле какого-либо критерия ошибки или функции потерь, являющейся функционалом от выхода объекта и выхода модели , т.е. . Говорят, что модели эквивалентны, если значения функций потерь для этих моделей одинаковы.

Идентификация предполагает использование как априорной информации, так и обработку данных измерений, полученных в результате экспериментов с системой. Такой подход соответствует, скорее, рассмотрению системы как «серого» ящика.

Обычно идентификация – многоэтапная процедура. Основные ее этапы следующие:


  • структурная идентификация, которая заключается в определении структуры математической модели на основе теоретических соображений;

  • параметрическая идентификация, включающая в себя проведение идентифицирующего эксперимента и определение оценок параметров модели по экспериментальным данным;

  • проверка адекватности – проверка качества модели в смысле выбранного критерия близости выходов модели и объекта.

В большинстве технических задач априорные знания об объекте позволяют получить информацию о структуре модели. В результате задача идентификации сводится к задаче оценивания параметров и (или) состояний. Так как реальные системы всегда зашумлены, то идентификация относится к задачам приближенного моделирования.

Следует иметь в виду, что кибернетические модели не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) измерять. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области пространства переменных, в которой осуществлялось их варьирование. Поэтому кибернетические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих в технической системе.

Важно отметить также, что два указанных способа получения математических моделей – классический метод и метод кибернетического моделирования конечно же, не являются взаимоисключающими.

Во-первых, они используют различную исходную информацию и, соответственно, природа ошибок и неточностей в моделях разная. В случае построения моделей на основе изучения «физической реальности» это неопределенность описания среды и неполнота физической модели объекта. В случае кибернетического моделирования основной источник неточностей – зашумленность реальных систем. Соответственно, исходная информация уже искажена помехами.

Во-вторых, при моделировании сложных систем для различных элементов этих систем могут использоваться разные методы получения математических моделей.

1.5. Классификация методов
математического моделирования применительно
к этапу исследования математической модели


Математическое моделирование процесса функционирования системы можно разделить на аналитическое и имитационное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифферен-циальных, конечно-разностных и т.д.) или логических условий.

Аналитическая модель может быть исследована следующими методами:


  • аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

  • численным, когда, не умея решать уравнения в общем виде, стремятся получить численные результаты при конкретных начальных данных;

  • качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость).

Наиболее полное исследование процесса функционирования можно получить, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными исследуемой системы, т.е. в результате аналитического решения задачи. Однако такие зависимости удается получить только для сравнительно простых систем.

Численный метод позволяет исследовать, по сравнению с аналитическим, более широкий класс систем, но при этом полученные решения носят частный характер.

Необходимость учета стохастических свойств системы, недетерминированность исходной информации, дискретность в отдельных элементах, наличие корреляционных связей между большим числом параметров и переменных, характеризующих процессы в системах, приводят к построению сложных математических моделей, которые не могут быть применены в инженерной практике при исследовании таких систем аналитическими методами. Это также не позволяет расчленить систему и использовать принцип суперпозиции в отношении влияющих факторов. Пригодные для практических расчетов аналитические соотношения удается получить лишь при упрощающих предположениях, обычно существенно искажающих фактическую картину исследуемого процесса. Указанные обстоятельства приводят к тому, что при исследовании сложных систем наиболее эффективными являются методы имитационного моделирования.

Под имитационным моделированием обычно понимают такое моделирование, при котором реализующий модель алгоритм воспроизводит процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени.

Указывая, что данная модель имитационная, мы обычно подчеркиваем, что в отличие от других типов абстрактных моделей, в этой модели сохранены и легко узнаваемы такие черты моделируемого объекта, как структура, связи между компонентами, способ передачи информации. С имитационными моделями также обычно связывают и требование иллюстрации их поведения с помощью принятых в данной прикладной области, графических образов.

Основным преимуществом имитационного моделирования, по сравнению с аналитическим, является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов, случайные воздействия и т.д., которые создают трудности при аналитических исследованиях.

Кроме того, имитационная модель обладает гибкостью варьирования структуры, алгоритмов и параметров моделируемой системы, что важно с точки зрения поиска оптимального варианта построения системы. Она позволяет включать в процедуру моделирования результаты натурных испытаний реальной системы или ее частей.

В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе проектирования.

Главным недостатком, проявляющимся при машинной реализации метода ИМ, является то, что решение, полученное при анализе имитационной модели, всегда носит частный характер, так как оно соответствует фиксированным элементам структуры, алгоритмам поведения


и значениям параметров системы, начальных условий и воздействий внешней среды. Поэтому для полного анализа характеристик процесса, а не только получения отдельной точки, приходится многократно воспроизводить имитационный эксперимент, варьируя исходные данные.

Несмотря на то, что имитационное моделирование является мощным инструментом исследования систем его применение не всегда рационально. Издержки, связанные с имитационным моделированием, всегда много выше, чем при аналитических исследованиях, и часто выше, чем при физическом моделировании. Следует хорошо подумать, прежде чем начинать решать задачу таким путем.

В качестве основных критериев целесообразности применения метода имитационного моделирования, по сравнению с аналитическим подходом, можно указать отсутствие законченной математической постановки задачи, не разработанность методов ее аналитического решения либо их чрезмерная сложность и трудоемкость, слабая подготовка персонала, не позволяющая ими воспользоваться.

Если сравнивать с физическим моделированием, то применение имитационного моделирования целесообразно, если иных методов решения задачи просто нет, либо требуется существенное «сжатие» по времени.




Достарыңызбен бөлісу:
1   ...   10   11   12   13   14   15   16   17   ...   64




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет