Принцип максимума особенно важен в системах управления с максимальным быстродействием и минимальным расходом энергии, где применяются управления релейного типа, принимающие крайние, а не промежуточные значения на допустимом интервале управления.
3.2. История
За разработку теории оптимального управления Л.С. Понтрягину и его сотрудникам В.Г. Болтянскому, Р.В. Гамкрелидзе и Е.Ф. Мищенко в 1962 г была присуждена Ленинская премия.
4. Метод динамического программирования
Метод динамического программирования основан на принципе оптимальности Беллмана, который формулируется следующим образом: оптимальная стратегия управления обладает тем свойством, что каково бы ни было начальное состояние и управление в начале процесса последующие управления должны составлять оптимальную стратегию управления относительно состояния, полученного после начальной стадии процесса4. Более подробно метод динамического программирования изложен в книге5
Заключение
В данном реферате рассмотрены задачи оптимального управления в зависимости от времени и минимизации функционала.
Далее рассмотрена задача оптимального управления - как задачу Лагранжа вариационного исчисления. Для нахождения необходимых условий экстремума применим теорему Эйлера-Лагранжа
При этом - принцип максимума особенно важен в системах управления с максимальным быстродействием и минимальным расходом энергии, где применяются управления релейного типа, принимающие крайние, а не промежуточные значения на допустимом интервале управления так называемый «принцип максимума Понтрягина».
За разработку теории оптимального упрпвления Л.С. Понтрягину и его сотрудникам В.Г. Болтянскому, Р.В. Гамкрелидзе и Е.Ф. Мищенко в 1962 г была присуждена Ленинская премия.
Метод динамического программирования основан на принципе оптимальности Беллмана.
Список использованной литературы
Самойленко В. И., Пузырев В. А., Грубрин И. В. «Техническая кибернетика», учеб. пособие, М., изд-во МАИ, 1994, 280 с. ил., ISBN 5-7035-0489-9, гл. 4 «Оптимальные системы управления динамическими объектами и процессами», с. 63-113;
Коршунов Ю. М. «Математические основы кибернетики», учеб. пособие для вузов, 2-е изд., перераб. и доп., М., «Энергия», 1980, 424 с., ил., ББК 32.81 6Ф0.1, гл. 5 «Структура и математическое описание задач оптимального управления», c. 202;
Методы робастного, нейро-нечёткого и адаптивного управления: Учебник / Под ред. Н.Д. Егупова, изд. 2-ое, стер., М., Изд-во МГТУ им Н.Э. Баумана, 2002, 744 с ил., ISBN 5-7038-2030-8, тир. 2000 экз, ч. 2 "Нечёткое управление"
Э. М. Галеев, В. М. Тихомиров «Оптимизация: теория, примеры, задачи», М., «Эдиториал УРСС», 2004, 320 с., ISBN 5-8360-0041-7, гл. 3 «Вариационное исчисление», п. 6 «Задача Лагранжа», с. 173—181;
«Численные методы в теории оптимальных систем», Моисеев Н. Н., «Наука», 1971, 424 стр. с илл., гл. 2 «Численные методы расчета оптимальных программ, использующие необходимые условия экстремума», с 80 — 155;
Беллманн Р. «Динамическое программирование», ИЛ, М., 2001;
«Численные методы в теории оптимальных систем», Моисеев Н. Н., «Наука», 2000, 424 стр. с илл., гл. 3 «Прямые методы теории оптимального управления», с 156—265;
Достарыңызбен бөлісу: |