Сабақтың аяғы
|
Мысал 3: Қорапта 2 ақ, 2 қара шар бар. Одан 2 шарды қатар алсақ, екеуінің де бір түсті болып шығу ықтималдығы қандай?
Шешімі. Тәжірибедегі мүмкін нәтижелер:
1. 2 ақ шар шығу
2. 2 қара шар шығу
3. бір ақ, бір қара шар шығу.
Қолайлы нәтижелер саны — екі, бұдан:
n=3, m=2, .
1.3. Ықтималдықтың геометриялық анықтамасы.
Алдыңғы тақырыпта біз тәжірибенің ақырлы санға тең теңмүмкіндікті нәтижелер бойынша оқиғаның ықтималдығын анықтадық.
Ал егер нәтижелер саны ақырсыз болса не істейміз? Мұндай жағдай кейбір геометриялық есептеулерде кездеседі.
Мысал 1: Әлемнің географиялық картасында (мысалға көзімізді жұмып) кездейсоқ нүктені көрсетейік. Бұл нүктенің Қазақстан жері болып шығу ықтималдығы қандай? Бұл сұраққа жауап беру үшін Қазақстан әлем картасының қанша бөлігін алатынын білу қажет. Яғни картаның барлық ауданының Қазақстан қанша бөлігін алатынын білу қажет. Бұл аудандардың қатынасы ізделінді ықтималдықты береді.
Берілген бір шектелген облысты деп белгбелгілейік. Егер облысының кез келген нүктесіне түсу теңмүмкін болса, онда кездейсоқ нүктенің берілген А жиынына түсу ықтималдығы аудандардың қатынасына тең болады:
мұндағы Р — ықтималдық, S – аудан. Бұл ықтималдықтың геометриялық анықтамасы.
|
Мысал 2: Жазықтықта шеңбер және шеңбер ішінде үшбұрыш берілсін. Шеңбер ішінен бір нүкте алайық. Онда нүктенің үшбұрышта жату ықтималдығын қалай анықтаймыз?
Егер шеңбер ауданы ауданның n бөлігін құраса, ал үшбұрыш ауданы m бөлігін құраса, онда
Мысал 3: Дәптерге салынған бұрышты транспортирмен өлшегенде, оның 900 –тық бұрыштың өлшемінде жату ықтималдығы қандай?
Шешімі:
m=900 –тық бұрыштың өлшемінде жатуы
n=1800 –тық бұрыштық өлшемі
|
Оқушылардың белсенділіген байланысты бағаланады.
|