18 ғасырда мұндай түрдегі кейбір теңдеулер ғана шешілген болса, жалпы әдістер тек 19 ғасырда ғана дамытылды, физика мен механиканың есептеріне байланысты қазір де дамытылуда. Аспан механикасының есептерінде дифференциалдық теңдеулердің сапалық теориясы қолданыс тапты ( А. Пуанкаре, А.М. Ляпунов). Дифференциалдық теңдеулермен қатар интегралдық теңдеулер теориясы да дамытыла бастады.
18 ғасырда мұндай түрдегі кейбір теңдеулер ғана шешілген болса, жалпы әдістер тек 19 ғасырда ғана дамытылды, физика мен механиканың есептеріне байланысты қазір де дамытылуда. Аспан механикасының есептерінде дифференциалдық теңдеулердің сапалық теориясы қолданыс тапты ( А. Пуанкаре, А.М. Ляпунов). Дифференциалдық теңдеулермен қатар интегралдық теңдеулер теориясы да дамытыла бастады.
Математикалық анализ бен математикалық физика дамуының геометрия мен алгебрадағы жаңа идеялармен түйіндесуі нәтижесінде математика мен оның қолдануында ерекше маңызды қызмет атқарып отырған математиканың үлкен бір жаңа саласы- функционалдық анализ жасалды. Статистикалық физика мен әр түрлі мәселелерді зерттеуге статистикалық әдістерді кең қолдану әрекеті ықтималдықтар теориясының алдына көптеген жаңа міндеттер қойды. Осы негізде бұл теория 19-20 ғасырларда күшті қарқынмен дамытылды.
19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдістер арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді ( мысалы, Гольдбах прблемасы).