Совершенно естественно, что в последние годы электронное содержимое машин непрерывно увеличивается, поскольку все больше бортовых механических систем преобразуется в электрические, электронные и мехатронные системы



бет3/26
Дата28.03.2022
өлшемі1,59 Mb.
#28999
1   2   3   4   5   6   7   8   9   ...   26
Байланысты:
„ â稪¨ ă¯à ¢«¥­¨ï ¤¢¨£ â¥«¥¬  ¢â®¬®¡¨«ï 2

Датчики концентрации кислорода

Рис. 2. Примеры современных датчиков концентрации кислорода и газа: а–в — нагреваемый датчик концентрации кислорода с твердым электролитом ZrO2 Thimble Type Oxygen Sensor Bosch; а — конструкция датчика; б — конструкция и принцип работы сенсорной ячейки: 1 — сенсорная керамика; 2 — электроды; 3 — контакт; 4 — контакт разъема; 5 — выхлопная труба; 6 — защитное пористое керамическое покрытие; в — передаточная характеристика: а — богатая смесь, б — бедная смесь; Us — сенсорное напряжение; г — планарный нагреваемый датчик концентрации кислорода Bosch; д, е — универсальный нагреваемый датчик Bosch; д — внешний вид; е — конструкция и принцип работы: 1 — сенсорный элемент (комбинация ячейки Нернста и ячейки кислородного насоса); 2 — двойная защитная трубка; 3 — уплотнительное кольцо; 4 — уплотняющая прокладка; 5 — сенсорный корпус; 6— защитная гильза; 7 — держатель контакта; 8— контактный зажим; 9 — PTFE (PolyTetraFluoroEthylene) — трубка — фильтр для очистки входного кислорода от воды и загрязнений; 10 — PTFE-сформованная гильза; 11 — 5 соединительных проводов; 12 — уплотнение; ж, з— датчики концентрации кислорода Denso; з — датчик широкого диапазона; и — датчики на основе TiO2 (иллюстрация с сайта www.sparkplugs.com); к, л —датчики газа NOx и соотношения воздух/топливо SiemensVDO и NGK Spark Plugs.


Все более строгие нормы регулирования эмиссии, принятые во многих странах, в частности в Европе (Euro IV и Euro V), создают обширный рынок для сбыта датчиков контроля выхлопных газов, среди которых выделяются два типа (рис. 2):

  1. датчики концентрации кислорода oxygen sensors, или λ-зонды,

  2. датчики оксида азота (NOx или nitrogen oxide sensors).

Основная задача датчика концентрации кислорода — контролировать ТВС двигателя по содержанию O2 в отработавших газах, чтобы при коэффициенте избытка воздуха λ = 1 достичь стехиометрического соотношения воздух/топливо, соответствующего смеси, в которой все топливо расходуется в процессе горения. Для бензиновых двигателей это соотношение составляет по весу примерно 14,7:1. Если воздуха меньше, топливо будет оставаться после сгорания — такая смесь является богатой. Недостаток богатой смеси — несгоревшее топливо в выхлопных газах, которое становится источником загрязнений. Если в ТВС в избытке воздух, наблюдается выброс кислорода (бедная смесь). Это способствует образованию загрязнений в виде оксида азота, и в некоторых случаях вызывает нарушение работы двигателя.

Активная керамическая часть (ZrO2) Thimble-датчика представляет собой твердый электролит в форме трубки, закрытой на одном конце, который нагревается изнутри электрически (рис. 2а–б). Электрически подогреваемые (а не нагреваемые выхлопным газом) датчики особенно удобны для измерения параметров двигателя, действующего на обедненной топливной смеси; они работоспособны и во время прогрева двигателя.

При высокой температуре (свыше 350 °C) электролит становится проводящим и реагирует на содержание кислорода в выхлопном газе, образуя характерный гальванический заряд, который снимается с электродов, покрывающих внутреннюю и верхнюю поверхности керамики, — слоев платины с микропорами. Максимальное значение заряда соответствует λ = 1. Заряд преобразуется в выходное ступенчатое напряжение датчика (рис. 2в) обычно от 0,1 до 0,9 В с 0,45 В при достижении стехиометрического соотношения. Типичное сопротивление составляет 2–6,5 Ом. Данный тип датчика функционирует, сравнивая чистый атмосферный воздух с выхлопами, поэтому очень чувствителен к различным загрязнениям — грязи, маслу, от которых датчик необходимо защищать.

Для того чтобы получить аналоговый сигнал, пропорциональный соотношению воздух/топливо, конструкция датчика широкого диапазона использует дуальный сенсорный элемент, включающий ячейку Нернста в планарном исполнении, как в датчике narrow range, но с дополнительным слоем кислородного насоса и диффузионным зазором. Корпус имеет также опорную камеру и нагревательный элемент. Если существует разница в уровнях концентрации кислорода через элемент ZrO2, в сенсорном элементе протекает ток, на основе которого формируется сигнал напряжения.

Датчики концентрации кислорода на основе оксида титана TiO2 (рис. 2и), выпускаемые, например, компанией NGK Spark Plugs, не способны вырабатывать напряжение самостоятельно. Вместо этого варьируется сопротивление элемента — в диапазоне 1–20 кОм. Это значительное изменение может прочитываться ECU, который генерирует выходное напряжение, питая датчик TiO2 опорным напряжением приблизительно в 1 В. При богатой смеси сопротивление датчика быстро падает, и уровень сигнала напряжения в ECU становится высоким; при бедной смеси сопротивление быстро увеличивается, а напряжение в ECU переключается к низкому уровню. Существуют и нагреваемые версии датчика на основе диоксида титана, что позволяет понизить сопротивление датчика до 4–7 Ом.

Необходимо учитывать, что автомобили оборудуются ECU, рассчитанным либо на использование датчика на основе диоксида титана, либо датчика на основе диоксида циркония. Эти датчики не взаимозаменяемы. Датчики на основе TiO2 более надежны, поскольку способны функционировать в условиях сильных загрязнений и не зависят от состояния окружающего воздуха в опорной камере и прочих факторов, важных для датчиков на основе диоксида циркония, поэтому актуальны для автомобилей, эксплуатируемых в жестких окружающих условиях.

Влиянием выхлопных газов (прежде всего NOx), которые вызывают смог и кислотные дожди, обусловлена разработка новых датчиков газа. Правительства многих стран требуют от автопроизводителей не только снижения эмиссии этих газов, но и ограничения в выхлопных газах других продуктов горения — например, CO, SOx, и CO2. Датчики газа детектируют содержание выхлопных газов и подают сигналы в управляющий блок для контроля ТВС и систему рециркуляции отработавших газов Exhaust Gas Recirculation (EGR).

Для того чтобы выяснить величину концентрации NOx, обычно используются две измерительные камеры. Первая камера за счет прикладывания напряжения к насосной ячейке заполняется кислородом, концентрация которого определяется измерительной ячейкой и поддерживается постоянной. Вторая сенсорная ячейка измеряет ионы кислорода, выделенные из NOx при диссоциации во второй камере, и вырабатывает сигнал (ионный ток кислорода), пропорциональный концентрации NOx. Уточненные методы позволяют детектировать нулевую концентрацию.



В качестве примера можно привести интеллектуальный датчик с многослойным сенсорным элементом ZrO2, который разработан совместно с NGK и выпускается Siemens VDO (рис. 2к). Датчик допускает как прямое измерение NOx, так и соотношения воздух/топливо. Интеллектуальный датчик включает газовый сенсорный элемент и электронный блок, генерирующий три сигнала: NOx, двоичный, линейный. Данные передаются к ECU двигателя посредством шины CAN. Датчик характеризуется независимостью от системных поставщиков и системы управления двигателем.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   26




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет