Технологии, облегчающие селекционный процесс. Одна из наиболее важных технологий этой группы — оплодотворениеin vitro, помогающее предотвратить прогамную несовместимость, которая может быть вызвана следующими причинами: генетически детерминированное (определенное) несоответствие секрета рыльца материнского растения и пыльцы отцовского, которое тормозит рост пыльцевых трубок на рыльце пестика;
несоответствие длины столбика пестика и пыльцевой трубки, в результате чего пыльцевая трубка не достигает семяпочки (гетеростилия):
тканевая несовместимость партнеров, приводящая к остановке роста пыльцевой трубки в любой момент ее прорастания от рыльца пестика до микропиле семяпочки (гаметофитный тип несовместимости).Клеточные технологии в селекции растений (по Р. Г. Бутенко, 1999)
Облегчение и ускорение селекционного процесса
Создание генетического разнообразия и скрининга генотипов с важными признаками
Оплодотворение in vitro
Использование сомаклональных вариаций и получение индуцированных мутантов на клеточном уровне
Культура незрелых гибридных семяпочек и зародышей (эмбрио- культура)
Клеточная селекция
Регенерация растений из тканей летальных гибридов
Гибридизация соматических клеток
Экспериментальная гаплоидия
Перенос чужеродных цитоплазма- тических генов
Клональное микроразмножение новых сортов, гибридов, линий (включая создание искусственных семян)
Перенос чужеродной генетической информации различного происхождения
Криосохранение генофонда
Адресный перенос ядерных генов
Преодоление прогамной несовместимости возможно благодаря выращиванию в стерильных условиях изолированной завязи с нанесенной на нее пыльцой или изолированных кусочков плаценты с семяпочками, рядом с которыми или непосредственно на ткани которых культивируется пыльца.
Значительным препятствием для селекции служит также пост- гамная несовместимость, вызванная разновременным развитием зародыша и эндосперма при отдаленной гибридизации. В результате образуются невсхожие щуплые семена. Получить растение из таких семян можно только при использовании метода эмбриокуль- туры, т.е. выращивания изолированного зародыша на искусственной питательной среде in vitro. Метод эмбриокультуры широко применяют при межвидовой гибридизации овощных растений, для микроразмножения ценных гибридов, для клеточной селекции.
Большое значение имеет создание гаплоидов, позволяющее ускорить процесс селекции в 2 — 3 раза. Использование гаплоидных клеток и гаплоидных растений способствует обнаружению экспрессии введенного в клетку генома, редких рекомбинаций, рецессивных мутаций, которые в диплоидных растениях, как правило, маскируются доминантными генами. Из гаплоидных клеток можно выделить протопласты; сливаясь, они образуют гибридные клетки и растения с диплоидным числом хромосом. Обрабатывая гаплоидные клетки колхицином, можно добиться удвоения числа хромосом и получить диплоидные гомозиготные растения. Все это значительно облегчает выявление и стабилизацию необходимых признаков. Кроме селекции гаплоиды применяются также в генно-инженерных исследованиях. Впервые возможность получения спонтанных гаплоидов при аномальном развитии пыльников, пыльцы и других объектов была показана в 1964 г. С. Гуха и С. Магешвари. В настоящее время в культуре гаплоидные растения получают из изолированных пыльников (андрогенез), изолированных семяпочек (гиногенез); из гибридного зародыша, у которого в результате несовместимости потеряны отцовские хромосомы (партеногенез). Новые сорта ячменя — Исток и Одесский-15 — были выведены благодаря комбинации партеногенетического метода с культурой изолированных зародышей за 4 года вместо 10—12 лет, необходимых для обычной селекции.