Кинематика гр kіnma, kіnmatos



бет1/22
Дата06.01.2022
өлшемі0,53 Mb.
#14507
  1   2   3   4   5   6   7   8   9   ...   22

1-билет.

Кинематика (гр. kіnma, kіnmatos – қозғалыс)– механиканың, дене қозғалысының геометриялық қасиеттерін, олардың массасы мен әсер етуші күштерді ескермей зерттейтін бөлімі. Классикалық механиканың бөлімі. Механикалық қозғалыс және оның сипаттамалары


Біз өміріміздің алғашқы сәттерінен бастап-ақ қоршаған ортамызда болып жатқан көптеген өзгерістерге назар саламыз. Сондай өзгерістердің бірі — қозғалыс. Мысалы, жүзіп келе жатқан кемені, көкке көтерілген ғарыш зымыранын немесе аспандағы қалықтаған бұлтты, ұшып бара жатқан ұшақты, жүріп келе жатқан адамдар мен мәшинелерді (сурет 1) көреміз. Бұл жағдайлардың бәрінде де дене қозғалды дейміз. Үлкен денелердің де, кіші денелердің де қозғалысын табиғи құбылыс ретінде физиканың механика деп аталатын арнайы бөлімі зерттейді.

Барлық қозғалыстар үшін дененің басқа денемен салыстырғанда орнын өзгертуі — олардың кеңістіктегі орналасу күйін анықтайтын ортақ белгісі болып табылады. Сондықтан қозғалыстағы дененің орналасу күйін анықтау үшін арнайы таңдап алынған басқа дене санақ денесі деп аталады.

Дене кей жағдайда тұтас қозғалмай, оның жеке бөліктері ғана қозғалуы мүмкін. Мысалы, денешынықтыру кезінде тік тұрған адамның қолы немесе аяғы денесіне қатысты бастапқы орнын өзгертеді. Сол сияқты серіппе созылғанда не сығылғанда оның бөліктерінің орны салыстырмалы өзгереді. Мұндай жағдайда да дене қозғалыс жасады дейді, өйткені оның бір бөлігі екінші бөлігіне қарағанда орнын өзгертеді.

Жоғарыдағы мысалдардан мынадай маңызды тұжырым жасауға болады: механикалық қозғалыс деп дененің уақыт өтуіне қарай басқа денемен салыстырғанда орнының өзгеруін айтады.

Көп жағдайда механикалық қозғалыстарды сипаттағанда қозғалыстағы денені материялық нүкте ретінде қарастырады. Расында да, дененің өлшемдері оның өзінен екінші бір денеге дейінгі арақашықтықпен салыстырғанда тым аз болса, дененің әрбір нүктесінің қозғалысын сипаттаудың қажеті жоқ. Ондай жағдайда дененің өз өлшемдерін ескермей-ақ, оны нүкте ретінде қарастырып сипаттау жеткілікті. Мысалы, Күнді айнала қозғалатын планеталарды қарастырғанда оларды материялық нүкте деп есептеуге болады. Расында да, Жердің радиусы оның Күнге дейінгі қашықтығымен салыстырғанда 2400 есе кіші. Міне, осындай жағдайларда Жердің бір ғана нүктесінің, яғни центрінің қозғалысын қарастыру жеткілікті. Алайда, бұл нүктенің материялық екенін және оның өлшемдері болмайтынын ұмытпаған жөн.

Сонымен материялық нүкте деп қарастырып отырған жағдайында өлшемдерін елемеуге болатын денені айтады.

Шындығына келгенде, табиғатта ешқандай материялық нүкте жоқ. Ол нақты дененің ойдан алынған қарапайым нүктелік моделі болып табылады. Бұл ұғым механикадағы кейбір мәселелерді шешудің ыңғайлы әрі оңтайлы болуы үшін ғана енгізілген.

Денелерді материялық нүкте деп қарастыруға болмайтын жағдайлар да жиі кездеседі. Мысалы, кемені құрастырып жасағанда немесе жағаға келіп тоқтағанда оны материялық нүкте деп есептей алмаймыз. Сол сияқты күн мен түннің белгілі бір аймақтардағы ауысуын қарастыра отырып, Жерді нүкте деп қабылдай алмаймыз.

Қандай да бір қозғалысты қарастырғанда қайсыбір денені материялық нүкте ретінде қарастыру не қарастырмау, сол дененің өзіне емес, көбінесе қозғалыстың сипатына, жауабы ізделініп отырған сұрақтың мазмұнына байланысты. Егер дененің нақты өлшемі мәселені шешуде басты рөл атқармайтын болса, онда оны материялық нүкте деп қарастыруға болады. Ал дененің салыстырмалы өлшемі қарастырылып отырған қозғалыста маңызды орын алатын болса, онда денені материялық нүкте ретінде қарастыруға болмайды.

Механикалық қозғалысты сипаттау үшін қозғалыс траекториясы, орын ауыстыру және жүрілген жол деген ұғымдар да енгізіледі. Жолаушы Алматыдан Астанаға дейін ұшақпен немесе пойызбен сапар шегеді делік. Бұл кезде ұшақ пен пойыздың шын мәнінде қозғалған сызықтары бір-бірімен беттеспейді. Олай дейтініміз, ұшақ біршама түзу сызық сызып, төтесінен ұшатын болса, пойыз жол-жөнекей басқа қалаларға да тоқтап, қисық сызық бойымен қозғалады. Тағы бір мысал ретінде А нүктесінен В нүктесіне қарай қозғалған жаяу адам мен автомобиль қозғалыстарын қарастырайық. Олар санақ денесі — Жермен салыстырғанда В нүктесіне әртүрлі сызықтардың бойымен қозғала отырып жетеді.

Дененің немесе материялық нүктенің санақ денесімен салыстырғандағы қозғалысы кезінде сызық түрінде қалдырған ізі қозғалыс траекториясы деп аталады.

Механикалық қозғалыстың салыстырмалылығы


фҚозғалатын дененің траекториясын «қозғалмайды» деп алынатын әртүрлі санақ денелеріне қатысты қарастырсақ, онда траекторияның түрліше өзгеретінін байқаймыз. Оған былайша көз жеткізуге болады. Мысалы, V жылдамдықпен бірқалыпты қозғалып келе жатқан вагонның жоғарғы сөресінен доп құлап түсті делік (сурет 2.5). Вагондағы адам доптың тік төмен түскенін көреді (сурет 2.5, а). Ал Жерде тұрған бақылаушы доптың қозғалыс траекториясының қисықсызықты екенін байқайды (сурет 2.5, ә). Бірінші жағдайда санақ денесі ретінде алынған вагонмен салыстырғанда доптың траекториясы тік (вертикаль) сызық болса, санақ денесі — Жермен салыстыратын екінші жағдайда парабола қисығы болып табылады.

Траекторияның мұндай өзгерістері аспан денелерінің қозғалыстарынан да байқалады. Мысалы, Айдың Жермен салыстырғандағы траекториясы дөңгелек болып келеді (сурет 2.6, а), ал Күнмен салыстырғанда оның қозғалыс траекториясы Жер орбитасы бойымен созылған серіппеге ұқсайды (сурет 2.6, ә). Міне, мұның бәрі механикалық қозғалыстың салыстырмалылығының нақты көріністері болып табылады.

Вагон мен Жерге, Жер мен Күнге қатысты траекториялар

Әртүрлі санақ жүйелеріндегі механикалық қозғалыстарды зерттей келіп, Галилей қозғалыстардың салыстырмалылығы туралы тұңғыш рет ғылыми қорытынды жасады. Оның жасаған қорытындысы ғылым тарихына Галилейдің салыстырмалық принципі деген атаумен енді.

Галилей тынық суда тыныш тұрған немесе бірқалыпты қозғалып келе жатқан кемелердің жабық каютасында отырып, механикалық қозғалысқа байланысты талай тәжірибелер жасады. Алайда, ол қаншама тәжірибелер жасаса да, кеменің тыныш тұрғанын немесе бірқалыпты қозғалып келе жатқанын анықтай алмады.

Сөйтіп ол мынадай дұрыс қорытынды жасады: механикалық қозғалысқа байланысты барлық құбылыстар, кеменің тыныштықта тұрғанына немесе бірқалыпты түзусызықты қозғалысына қарамастан, барлық жағдайларда бірдей өтеді.

Галилейдің салыстырмалық принципі деп аталып кеткен бұл қорытынды жалпы түрде былайша түйінделеді: бір-біріне қатысты түзусызықты бірқалыпты қозғалатын барлық санақ жүйелерінде кез келген дененің қозғалысы бірдей өтеді.

Галилей ішінде отырып тәжірибелер жасаған тыныштықта тұрған кеме бір бөлек санақ жүйесі болып табылады. Ал, түзусызықты бірқалыпты қозғалатын кеме басқа бір санақ жүйесі болып табылады. Алайда, екі санақ жүйесінде де механикалық құбылыстар абсолютті бірдей өтеді. Сондықтан механикалық құбылыстар бірдей өтетін мұндай санақ жүйелерін физикада инерциялық санақ жүйелері деп аталады. Ендеше, бір-біріне қатысты бірқалыпты түзусызықты қозғалатын барлық санақ жүйелері инерциялық санақ жүйелері болып табылады. қозғалыстың екі түрі болады. Олар: ілгермелі және айнымалы. Ілгермелі қозғалыс - дененің кез келген екі нүктесін қосатын түзу сызық өзіне-өзі параллель күйде қозғалатын. Мұндай қозғалыс кезінде дененің барлық нүктелері бірдей қозғалады, сондықтан ілгермелі қозғалысты қарастырылады, оның тек бір ғана нүктесінің қозғалысын қарастыру жеткілікті. Бұл жағдайда қозғалысты сипаттау үшін материал нүкте ұғымын қолдануға болады. Механикалық қозғалыс - дегеніміз уақыт өтуіне қарай дененің немесе оның кейбір бөліктерінің санақ денесі деп аталатын басқа денелерге қатысты кеңістіктегі орын ауыстыруы. Зерттелетін нысанның қасиеттеріне байланысты Кинематика: нүктелер Кинематикасы, қатты денелер Кинематикасы және үздіксіз өзгеріп отыратын орта (деформаланатын денелердің, сұйықтықтардың, газдардың) Кинематика сы болып бөлінеді.[1] Жерге қатысты белгілі бір биіктіктен түсірілген денелер қозғалыс бағытын өзгертпей, вертикаль бағытта жер бетіне жетеді. Жоғарыдан түсірілген дене еркін түсу қозғалысы барысында Жердің тартылысы әсерінен денелер тұрақты және бағыты төменге бағытталған үдеуге ие болады (g=9.8 м/2). Жерге қатысты белгілі бір биіктіктен бастапқы жылдамдықсыз түсірілген дененің Жердің тартылысы әсерінен жасайтын қозғалысы дененің еркін түсуі дейміз. Еркін түсу қозғалысын сипаттайтын теңдеулер: h=1/2gt2( t уақытта жүрілген жол), V=gt (t уақыттан кейінгі жылдамдық), V=2gh(Уақытқа тәуелсіз жылдамдық) Дененің шеңбер бойымен өзара тең аралығында бірдей жол жүруі бірқалыпты шеңбер бойымен қозғалыс деп аталады. Дененің шеңбер бойымен қозғалыс барысында дененің бір айналымға жұмсалған уақыты период Т, ал бірлік уақытта жұмсалған айналым саны жиілік ʋ деп аталады [1] Санақ жүйесі деп санақ дененсінен, онымен байланысқан координаталар жүйесінен және уақыт есептейтін аспаптан тұратын жүйені айтады. Координаталар жүйесі мен санақ жүйесі бір нәрсе емес және оларды шатастыруға болмайды.

2. Арнайы салыстырмалылық теориясының негізін осы заманғы физиканы жасаушылардың бірі – А.Эйнштейн қалады. Бұл кеңістік пен уақыт жөніндегі осы заманғы физикалық теория. Ньютон механикасы сияқты бұл да уақытты біртекті деп қарастырады. Арнайы салыстырмалылық теориясын релятивистік теория деп атайды.

Арнайы салыстырмалылық теориясының негізін 1905 ж. Эйнштейн тұжырымдаған екі постулат құрайды.



Бірінші постулат - салыстырмалылық принципі: барлық физикалық құбылыстар (механикалық, электромагниттік және т.б.) бірдей жағдайларда кез келген инерциялық санақ жүйелерінде бірдей өтеді.

Екінші постулат - жарын жылдамдығының тұрақтылық принципі: жарықтың ваккумдегі жылдамдығы барлық инерциялық санақ жүйелерінде бірдей және жарық көзінің қозғалыс жылдамдығына тәуелсіз болады.

Салыстырмалылық теориясы классикалық түсініктің орнына кез келген кеңістік пен уақыт туралы жаңа ілім болып табылады. Салыстырмалылық теориясына сәйкес оқиғалардың бір мезгілділігі, ара қашықтықтар мен уакыт аралықтары абсолютті емес, салыстырмалы болып табылады. Олар санақ жүйесіне тәуелді болады

3.

2-билет



1. Табиғатта әр түрлі күштер кездеседі. Күш денелердің қозғалуына әсер етеді.

Егер сіз партаның үстіндегі кітапты жай қозғасаңдар ол бірден қозғала қоймайды. Оған себеп болған үйкеліс күшінің әсері. Егер кітапты қатты қозғасаңыз ол бір бағытта сырғанай бастайды. Үйкеліс күшінің әсерінен кітап біраз жерге барып тоқтауы мүмкін. Яғни үйкеліс кез келген дененің қозғалуын тежейді немесе оны тоқтатады.

Кез келген дененің үстіңгі беті біз ойлағандай теп тегіс бола бермейді. Оны микроскоп арқылы байқауға болады. Дененің беті бұдыр болып келсе үйкеліс күші жоғарылайды. Сондьқтан да қағаз бетіне қаламсаппен жазғанда оның ізі қалады, ал әйнектің бетіне жазсаңдар, оған жазу түспейді. Себебі оның беті өте тегіс, үйкеліс күші өте аз. Бәтеңкелеріңнің табанына қарап көріңдерші, нені байқайсыңдар. Неге табандары бұдыр-бұдыр болып келген? Не себепті? Ал мұз айдынындағы сырғанақ тебушілердің конькиінің табаны тегіс болады. Себебі үйкелісті азайтып тез козғалу үшін қажет. Үйкелісті азайтудың бірден-бір жолы арнайы майды жағу. Мысалға, жұмыс істеп тұрған машинаның тетіктері шыдамды болуы үшін, бірін - бірі үйкелеуден сақтау үшін ұдайы майлап отырады.

Егер сендер бір нәрсені қолдарыңнан түсіріп алсаңдар, ол әрдайым жерге құлап түседі. Бүндай күшті тартылыс күші деп атайды. Тартылыс күші болмаса жер бетіндегі денелер (ағаш, үй, адам, жануар) ғарыштық кеңістікке ұшып кеткен болар еді. Осыдан 300 жыл бұрын ағылшын ғалымы Исаак Ньютон Бүкіләлемдік тартылыс Заңынашты. Тартылыс күші Күн жүйесіндегі ғаламшарларды Күннің айналасында өз орбиталарында ұстап тұр. Тартылыс күші Жер атмосферасында ұстап тұр. Бұдан басқа көптеген процестер тартылыс күшіне байланысты болады.

Серпiмдiлiк күшi Денелердiң кез-келген көлемi мен пiшiнiн өзгертуiн деформация деп атайды.Деформация серпiмдi және серпiмсiз болып екіге бөлiнедi Егер денеге әсер ететiн күштiң әсерi тоқтағанда дене бастапқы күйге қайтып келетiн болса, онда мұндай деформация серпiмдi деп аталады.Егер күштiң әсерi тоқтағанда дене бастапқы күйге қайтып келмесе деформация серпiмсiз немесе пластикалық деп аталады.Серпiмдi деформация кезiнде дененiң абсолют деформациясы түсiрiлген күшке тура пропорционал болады. мұндағы: -пропорционалдық коэффициент (қатаңдық), өлшем бірлігі .Денелердiң қатаңдығы дененiң тегіне және өлшемдерi мен пiшiнiне тәуелдi болады. Серпiмдiлiк күшi Табиғаты жағынан электромагниттiк күштерге жатады. Серпiмдiлiк күшi әрқашан абсолют деформацияға қарама-қарсы бағытталады. - бұл Гук заңы деп аталады. Түсiрiлген күштiң күш түсетiн ауданға қатынасы- механикалық кернеу деп аталады.Осы өрнектi ескере отырып, Гук заңын келесi түрде жазуға болады: мұндағы - Юнг модулi, заттың серпiмдi қасиетiн анықтайтын шама, өлшем бiрлiгi – Паскаль, - дененiң салыстырмалы деформациясы. және екенiн ескере отырып, алатынымыз Бұдан серпiмдiлiк коэффициентiнiң өрнегiн аламыз:

Үйкелiс күшi Бiр-бiрiне қатысты қозғалатын денелердiң арасында немесе бiр ғана денелердiң бөлшектерiнiң арасында пайда болатын және әрқашан қозғалысқа қарама-қарсы бағытталған күштi үйкелiс күшi деп атайды.Үйкелiс күшi табиғаты жағынан электромагниттiк күштерге жатады. Қатты денелердiң арасында пайда болатын үйкелiс күшiн сыртқы үйкелiс күшi деп атайды.Ал бiр ғана дененiң бөлшектерiнiң арасында болатын үйкелiс күшiн iшкi үйкелiс күшi деп атайды.Егер бiр-бiрiне қатысты қозғалатын қатты денелер арасында сұйық қабаты болса, мұндай үйкелiс күшi - сұйық үйкелiс күшi деп, ал сұйық қабаты болмаса - құрғақ үйкелiс күшi деп аталады. Құрғақ үйкелiс күшi сырғанау және домалау үйкелiс күштерi болып екiге бөлiнедi. Қозғалмай тұрған денелердiң арасында пайда болатын денелердiң күшiн тыныштық үйкелiс күшi деп аталады.Үйкелiс күшi дененiң түсiретiн нормаль қысымына пропорционал. мұндағы: - үйкелiс коэффициентi. Үйкелiс коэффициентi денелердiң тегіне және беттерiнiң тегiстiгiне тәуелдi болады.

Кедергi күшi Қатты денелердiң сұйықтар мен газдарда қозғалғанда пайда болатын және дененiң қозғалысына қарсы бағытталатын күштi кедергi күшi деп атайды.Кедергi күшi денелердiң пiшiнiне, дене бетiнiң тегiстiгiне және ортаның тегіне тәуелдi болады. Аз жылдамдықта кедергi күшi дененiң жылдамдығына тура пропорционал болады.Өте үлкен жылдамдықтарда кедергi күшi жылдамдықтың квадратына тура пропорционал болады.

Ауырлық күшi және салмақ Дененiң жерге тартылу салдарынан денеге түсетiн күштi ауырлық күшi деп атайды.Ауырлық күшi дененiң қозғалысына тәуелсiз, әрқашан дененiң массасына тура пропорционал.Дененiң жерге тартылу салдарынан тiрекке немесе аспаға түсiретiн күшiн салмақ деп атайды.Дене түзу сызықты бiрқалыпты қозғалған жағдайда, салмақ: Дене тiк жоғары а үдеумен қозғалған жағдайда дененiң салмағы та-ға артады. Дене тiк төмен а үдеумен қозғалған жағдайда дененiң салмағы та-ға кемидi. Дененiң тiрекке немесе аспаға салмақ түсiрмейтiн күйiн –салмақсыздық деп атайды.

Бүкiл әлемдiк тартылыс заңы Денелердiң бiр-бiрiне тартылыс күшi осы денелердiң массаларының көбейтіндісіне тура пропорционал және денелердiң ара қашықтықтарының квадратына керi пропорционал болады мұндағы: - гравитациялық тұрақты деп аталады.Тартылыс күшi - центрлiк күштерге жатады, яғни денелердiң центрлерiн қосатын түзудiң бойымен бағытталады.Ньютонның бүкiл әлемдiк тартылыс заңымен анықталатын гравитациялық масса деген ұғым бар.Бұл масса денелердiң тартылыс өрiстерiн қоздыру және тартылыс өзгерiстерiнiң әсерiн сезiну қабiлетiн сипаттайды. Сонда бұл қандай масса? Дәл өлшеулердiң нәтижесiнде инерттiк масса гравитациялық массаға тең екенi анықталды. Сондықтан оларды ерекше бөлудiң қажетi жоқ. Денелердiң бiр-бiрiмен тартылу күшi материяның ерекше бiр түрi гравитациялық өрiс арқылы берiледi. Гравитациялық өрiстi сандық сипаттау үшiн гравитациялық өрiстiң кернеулігі деп аталатын шама енгiзiлген.



Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   22




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет