Қысқаша анықтама және ашылу тарихы.
Электрохимия ғылым ретінде ХVIII және XIX ғасырларда шет елдерде қалыптасты. Тек сол кезде шешімі электрохимия теориясын жаңа дәрежеге көтерген болатын проблемалар туындады. 1799ж итальян физигі А.Вольттің «вольттік бағанасының»- адамзат тарихындағы бірінші тоқ көзінің пайда болуы және итальян физиологы Л.Гальванидің тәжірибелері электрохимияның ғылым ретінде дамуына бастапқы түрткі болды.
Электрохимия жаңа дамып жатқан ғылым. Тек екі ғасыр бұрын электр тогының тұздардың сулы ерітінділері арқылы өткен кезде жаңа заттар пайда болатын химиялық алмасулар жүретіні анықталды.
Тек өткен ғасырдың басында ғана заттардың ерітінділері мен балқымаларында болатын электрохимиялық процестерді зерттеудің ғылымдық бағыты- электрохимия пайда болды.
Электролиздің өндірістік қолданылуы ХІХ ғасырдың 70 жылдарында тұрақта электр токты қуатты генераторлардың пайда болуынан кейін ғана мүмкін болды.
Электрохимияны 70-ші жылдардың соңында ғана екі бөлімге бөле бастады: ионика және электродика. Ионика- электр өрісінің әсерінен зарядталған бөлшектердің жүрісін және электрөткізгіштік құбылысын зерттейтін бөлім, ал электродика электрод ерітінді (балқыма) шегі арқылы өтетін электр тогының электродтар бетінде жүретін құбылыстарды зерттейді.
Егер энциклопедиялық сөздікке көз салатын болсақ, келесі анықтамаға тірелеміз:« Электролиз ( грек тіліндегі electro және lysis- бөліну, ыдырау)- электрохимиялық тотығу- тотықсыздану процестерінің электрлік тогы өткен кездегі электролитке салынған электродтарға әсері.» электролиз электрохимиядағы ең маңызды бағыт болып табылатыны ескеру қажет, ол өз кезеңінде электрохимия облысында маңызды жаңалықтардың ашылуына негіз болды.
Электролиттік деп заттарға электр тогының әсерінен болатын химиялық айналымдарды айтамыз.
Электролиз процессі барлық жағдайларда бірдей емес, ол бірқатар факторларға тәуелді болады- электролиттің табиғатына, электролиттік ваннаның типіне, электролиздік процестер өздерінің оптимизациясына.
Техникалық және қолданбалы электролизді ажыратады, ал ал электролиттік процестерді келесі түрде жіктейді:
1. металдардың балқымаларының алынуы.
2. гальваникалық қабаттардың алынуы
3. бейорганикалық заттардың алынуы (хлор, сутегі, оттегі, сілтілер және т.б.)
4. органикалық заттардың алынуы
5. металдардың тазартылуы (қола, күміс)
6. металдардың алынуы (магнии, цинк, литий, натрий, калий, алюминий,
т.б.)
7. металдар беттерінің өңделуі.
8. электорофорез көмегімен пленкалардың жабылуы.
9. электродиализ және судың тұзсыздандыруы.
Электролиздің мақсатты қолданылуы мынада жатады: оның көмегімен таза элементтің массалық үлесі жүз процентке ұмтылатын металдарды алуға болады. Ал натрий, никель, таза сутегі және басқалар тек осы метод арқылы алынады.
Сондай-ақ медь мен алюминийді көп жағдайда осы әдіс арқылы алады.
Электролиз зергерлік бұйымдарға алтын немесе күміс пленкасымен жабу үшін қолданылады. Осындай әдіспен бұл металдарды коррозиядан қорғайды.
Бүгінгі таңда электрохимиялық процестердің зерттелуі, оларға әсер ететін факторларды анықтау, электролиз процессінің өндірістік шараларда қолданудың жаңа түрлерінің анықталуы жүргізіліп жүр. Көптеген факторлар әлі де түсінікіз.
Ең басты тапсырма болып, электролиз әдісін одан әрі дамыту, өнімділік пайдалы,ал электроэнергия шығындары минимальды болуы. Сонымен қатар электролиз өнімінің саны мен сапасына әсер ететін түрлі факторларды ескеру қажет(электродтардың материалы, ток тыңыздығы, ток күші, электролит температурасы, т.б.).
Электролиз теориясы.
Электролиз тұрақты токтың жүргізу энергиясы және электродтардағы химиялық айналымдардан бөлінетін энергия арқасында жүреді. Сондықтан, электролиз тек электр тогы жүретін орталарда өте алады.
Электр тогының өткізгіштеріне назар аударайық.
Электролит деп, ерітіндісі арқылы өтетін токтың нәтижесінде жүретін химиялық процесті айтамыз.
Электр тогының өткізгіштеріне мыналар жатады: тұздардың, қышқылдардың, негіздердің сулы ерітінділері. Электр тогын өткізетін заттар мен ерітінділер электролит деген атқа ие болды.
Сонымен қышқылдар, негіздер және тұздар электролит болып табылады.
Токтың нашар өткізгіштері болып дистильднеген су, қанттың, спирттің, глицериннің сулы ерітінділері, сонымен қатар, қалыпты осмотикалық қысымды ерітінділер, соның ішінде, қышқылдар, тұздар мен негіздердің басқа сұйықтардағы ерітінділері жатады. Құрғақ тұздар және сусыз қышқылдар мен негіздер (қатты түрде) ток өткізбейді.
Электролиз кезіндегі энергия мақсатты өнімдердің қалыптасуы процессі жүйесінің гиббстік энергиясын арттруға жұмсалады және электролизер және электр жүйенің басқа аудандарындағы кедергі нәтижесінде болатын біртіндеп жылу ретінде ыдырайды.
Электролиз нәтижесінде катодта жаңа өнімдердің пайда болуымен электролит молекулалары мен иондарының тотығуы жүреді. Катиондар электрондарды қабылдап, тотықсызданудың төмен дәрежелі иондарға немесе атомдарға айналады.
Электролиз нәтижесінде анодта анод материалына жататын немесе электролитте болатын иондар немесе молекулалардың тотықсыздануы жүреді (анод ыдырайды немесе тотықсызданады).
Сол әдіспен, электролиздердің бастапқы өнімдері қышқылдар, негіздер және тұздардың алмасу реакциясы кезіндегі бөлшектері болып табылады, олар өзгермейді, бір заттан екіншісіне ауысады.
Электродтан бөлінетін өнімдерді зерттей отырып, қышқылдар, негіздер және тұздардың электролизі кезінде катодта әрқашан металл мен сутегі, ал анодта қышқыл қалдықтары мен кейін өзгерістерге ұшырайтын гидроксильді топтар бөлінетіні анықталды.
Электролиз кезіндегі процестерді дәлірек қарастырайық.
Бізге бірінші жақты өткізгіштер белгілі, оларда электр электрондар арқылы тасымалданады, ал екінші жақты өткізгіштерде электр иондар арқылы тасымалданады.
Электрондар иондармен бірінші жақты өткізгіштер екінші жақты өткізгіштермен шектесетін электр тізбегі бар жерлерде өзара әсерлеседі. Сол арқылы электрохимиялық процестер жүреді.
Бұл жүйе энергияның химиялық көзі деп аталады, егер бұл процесстер өзімен жүретін болса.
Егер олардың жүруі электр энергиясының қосылуымен шартталатын болса, онда электролиз жүреді.
Электролиз кезінде электродтарда жүретін электрохимиялық процестер ең алдымен электрохимиялық жүйелерге сәйкес болатын электродтық потенциалдар қатынасына тәуелді болады.
Бірнеше мүмкін болатын процестерден минимальды энергия шығыны болатыны жүреді.
Бұл катодта ең көп электродты потенциалы болатын электрохимиялық жүйелердің тотықсызданған формаларының тотықтануы жүреді, ал анодта ең аз электродты потенциалы болатын жүйелердің тотықтанған формалары тотықсызданады.
Енді магний хлориді балқымасы мысалында электролиз процессін қарастырайық.
Егер MgCl2 балқымасы арқылы ток өткізетін болсақ, магний катиондары теріс ішкі тізбек арқылы келетін электрондармен өзара әсер ететін
электродтарға қарай тартылады.
Mg2++2e-=Mg
Ал хлор аниондары электр тогының әсерінен оң электродқа қарай тартыла бастайды, артық электрондарды бере отырып және тотықсызданады.
Сонымен хлор иондарының тотықсыздануы- электрохимиялық кезең бастапқы процесс болып келеді.
2Cl-=2Cl+2e-
Келесі процесс – хлор атомдарының молекулаларына өзара байлануы жүреді.
2Cl=Cl2
Енді балқыманың электролиз кезіндегі тотығу-тотықсыздану реакциясының электродта жүретін процестер теңдіктерін қоса алғанда
жалпы теңдеуін аламыз.
Mg2++2Cl-1=Mg+Cl2
Электролит иондарынынан басқа кез келген сулы ерітіндіде судың диссоциация өнімдері болатын иондар болады – Н+ және OH-. Судың молекулалары да берілген шартарда электрохимиялық тотығу-тотықсыздануға ұшырайды.
Электролит катиондары сутегі катиондары сияқты катодта разрядталады. Және аналогия бойынша, анодта электролит аниондарының және гидроксид иондарының разрядтары жүреді.
Сулы ерітінділердің электролизі кезінде катодты процестерді қарастыра отырып сутегі иондарының тотығу процессіндегі потенциал мөлшерін ескеру қажет. Бұл потенциал сутегі иондарының концентрациясына тәуелді болады және бейтарап ерітінділер жағдайында (рН=7) мына мәнге ие болады: φ=─0¸059•7= ─0¸41B.
Бейтарап ерітіндіде катодтан металдың электролиті кезінде және ─0¸41B ке қарағандағы электродты потенциалы оң болатын металл бөлінеді.
Ал электролит жағдайында, потенциалы ─0¸41Bке қарағанда теріс потенциал болатын металдар тотықтанбайды, сутегінің бөлінуі жүреді.
Ал егер металл потенциалы ─0¸41B көрсеткішіне жақын болса (орта қатардың металдары – Zn, Cr, Fe, Ni), электролиз шарттарына және ерітінді концентрациясына байланысты металдың тотығуымен қатар сутегінің бөлінуі мүмкін; металл мен сутегінің бірқатар бөлінуі көп кездеседі.
Сутегінің қышқыл ерітінділерінен электрохимиялық бөлінуі сутегі иондарының разрядталыну нәтижесінде пайда болады. Бейтарап немесе сілітілі орталар жағдайында ол судың электрохимиялық тотығуының нәтижесі болып келеді:
2H2O+2e-=H2+2OH-
Сонымен, сулы ерітінділердің электролизі кезінде катодты процестердің мінезі ең алдымен кернеу қатарындағы сәйкес металдың орналасуымен анықталады. көп жағдайда ерітіндінің рН ,металл иондарының концентрациясы және электролиздің басқа шарттары маңызды болады. Анодты процестерді қарастырған кезде анодтың материалы электролиз кезінде тотығу мүмкіншілігін ескеру қажет. Осыған байланысты инерттік анодпен электролиз және активті анодпен электролиз деп ажыратады. Активті анод деп, материалы электролиз кезінде тотыға алатын анодты айтады. Инертті анод материалы негізінде көбінесе көмір графитін немесе платинаны қолданады. Инертті анодта сілтілердің сулы ерітінділерінде, құрамында оттегі болатын қышқылдар және оның тұздары, сонымен қатар, фторлысутекті қышқылдар және фторидтердің электролизі кезінде судың оттегі бөлу арқылы электрохимиялық тотықсыздануы жүреді.
Ерітіндінің рН на байланысты бұл процесс әртүрлі жүреді және әр түрлі теңдеулермен жазылуы мүмкін.
4OH-=O2+2H2O+4e-
Ал қышқыл немесе бейтарап ортада
2H2O=O2+4H++4e-
Қарастырылып отырған жағдайларда судың электрохимиялық тотықсыздануы энергетика жағынан ең пайдалы болып келеді. Құрамында оттегі болатын аниондар не тотыға алмайды, не тотығу процессі өте жоғары потенциалдарда өтеді. Мысалы, SO42 ионы тотықсыздануының стандартты потенциалы
2SO42-=S2O82-+2e-
2,010В ке тең, су тотықсыздануының стандартты потенциалын біршама арттырады. (1,228B).
F ионы тотықсыздануының стандартты потенциалыодан үлкен көрсеткішке ие (2,87B).
Сулы ерітінділердің оттексіз қышқылдары және олардың тұздарының анодтағы электролизі кезінде аниондар разрядталады. Көбінесе, HI, HBr, HCl ерітінділері және олардың тұздарының электролизі кезінде анодта сәйкес галоген бөлінеді. HCl және оның тұздарының кезінде хлордың бөлінуі жүйелердің орналасуын кері тұжырымдайды
2Cl-=2Cl+2e-(φ=1¸359B)
және
2H2O=O2+4H++4e-(φ=1¸228B)
стандартты электродты потенциалдар қатарында. Бұл аномалия аса маңызды екі электроды процесстердің біреуінің кернеуінің тым жоғары болып кетуіне байланысты- анодтың материалы оттегі бөліну процессіне тежеулі әсер етеді.
Ал активті анод жағдайында бәсекелесетін тотқсыздану процестердің саны үшке дейін өседі: судың оттегі бөлінуімен электрохимиялық тотықсыздануы, анионның разрядталуы (яғни оның тотықсыздануы) және анод металының электрохимиялық тотықсыздануы (металдың анодтық еруі деп те атайды). Бұл мүмкін болатын процесстерден тек энергетикасы жағынан ең пайдалысы ғана жүреді. Егер анод металы стандарттық потенциалдар қатарында басқа екі электрохимиялық жүйелерден ертерек орналасқан болса, металдың анодтық еруі байқалады. Кері жағдайда оттегінің бөлінуі немесе анионның разрядталуы жүреді.
Сулы ерітінділердің электролизінің бірнеше типтік жағдайларын қарастырайық.
CuCl2 ерітіндісінің инердті анодпен электролизі. Қола керну қатарында сутектен кейін орналасқан; сондықтан катодта Cu2+ иондарының разрядталуы және металдық қоланың бөлінуі жүреді. Анодта хлорид-иондар разрядталады.
Қола хлориді (ІІ) ерітіндісінің электролиздік сұлбасы.
CuCl2
Катод←Cu2+2Cl-→Анод
Cu2++2e-=Cu2Cl-=2Cl+2e-
2Cl=Cl2
K2SO4 ерітіндісінің инертті анодпен электролизі. Калий кернеу қатарында сутегіден біршама ерте орналасқандықтан, катодта сутегінің бөлінуі және ОН- жиналуы болады. Анодта оттегінің бөлінуі және Н+ иондарының жиналуы жүреді. Сонымен қатар катодты кеңістікке К+иондары жиналады, ал анодтікіне- SO42 иондары. Сол арқылы ерітінді барлық жағынан электрбейтарапты болып қалады. Алайда катоды кеңістікте сілті жиналады, ал анодта-қышқыл.
Калий сульфаты ерітіндісінің электролизінің сұлбасы:
2K2SO4
Катод←4K+2SO42-→Анод
4K+2SO42-
4H2O+4e-=4OH-+4H2H2O=4H++2O+4e-
KOH4H=2H22O=O2H2SO4
NiSO4 ерітіндісінің никельді анодпен электролизі. Никельдің стандартты потенциалы (-0,250B) -0,41Bден кішкене артық; сондықтан NiSO4 бейтарап ерітіндісінің электролизі кезінде катодта негізінен Ni2+ иондарының разрядтары және металдың бөлінуі жүреді. Анодта кері бағытта процесс жүреді – металдың тотықсыздпнуы, никельдің потенциалы судың тотықсыздану потенциалынан әлдеқайда аз. Сол арқылы, берілген жағдайда электролиз анод металының еруі мен оның катода бөлінуіне әкеліп соғады.
Никель сульфаты ерітіндісінің электролиз сұлбасы:
NiSO4
Катод→Ni2+SO42←Анод
SO42-
Ni2++2e-=Ni Ni=Ni2++2e-
Бұл процесс никельдің электрохимиялық тазартылуы кезінде қолданылады.
3.Электролиз негізінде жататын Фарадей заңдары.
Фарадейдің бірінші заңы.
«Электр тогының электролит ерітіндісі арқылы өькендегі электродта бөлінетін зат массасы электр көлеміне тура пропорционалды болады».
∆m=kэQ
Мұндағы ∆m-реакцияға түскен заттың мөлшері; Q- электр мөлшері; kэ- электр мөлшерінің бірлігіне қанша зат әсер еткенін көрсететін пропорционалдық коэффициент.
k мөлшері электрохимиялық эквивалент деп аталады.
k=M/(Naz|e|)
мұндағы z ион валенттілігі; М электродта бөлінген заттың молярлық массасы; Na Авогадро тұрақтысы, |e|=1,6•10-19 Кл.
Фарадейдің екінші заңы.
Фарадейдің екінші заңы бойынша, өткен электрдің берілген мөлшерінде реакцияға түскен заттардың массаларының қатынасы олардың химиялық эквиваленттерінің қатынасына тең:
∆m1\A1=∆m2\A22=∆m3\A3=const
Элементтің химиялық эквиваленті сутегінің бір атомдық массасын немесе оттегінің жарты атомдық массасын қосатын немесе алмастыратын химиялық қосылыстарда 1\12 атом массасының C12болатын элемент бөлшегі массасы қатынасына тең. «химиялық эквивалент» түсінігі қосылыстарға қолданылады. Солай, қышқылдың химиялық эквиваленті сан бойынша оның молярлық массасының негізіне бөлінуін айтамыз (сутегі иондарының саны), негіздің химиялық эквиваленті-оның молярлық массасының қышқылдығына бөлінуін (бейорганикалық негіздерде- гидроксильді топтардың санына), тұздың химиялық эквиваленті- оның молярлық массасының катиондар немесе аниондар зарядтарының қосындысына қатынасы болып табылады.
4.