Актуальность его безусловна


Калорический нистагм по отношению к внешнему пространству всегда вертикален и совпадает с направлением конвекционного смещения жидкости



бет31/222
Дата18.10.2023
өлшемі2,57 Mb.
#118238
түріУчебник
1   ...   27   28   29   30   31   32   33   34   ...   222
Калорический нистагм по отношению к внешнему пространству всегда вертикален и совпадает с направлением конвекционного смещения жидкости.
В таком случае, нет необходимости ни при калорической пробе, ни при вращении стремиться к строгому соответствию положения горизонтального полукружного канала плоскости воздействия. Вертикальное положение головы при вращении и горизонтальное – при калорической пробе необходимо соблюдать для того, чтобы с помощью электроокулогафической методики с меньшими искажениями зарегистрировать основную горизонтальную (относительно головы) составляющую нистагма.
Исследование функции вестибулярного аппарата в клинике представляет значительные трудности для врача. Это объясняется не только сложностью анатомического строения и закономерностей функционирования самого вестибулярного аппарата, но и тем, что в организме он действует в неразрывном единстве с другими рецепторами, воспринимающими внешнее пространство и взаиморасположение отдельных частей тела. Все эти рецепторы являются сенсорными элементами функциональной системы, обеспечивающей поддержание равновесия с установкой тела, головы и глаз. Стимулируя рецепторы вестибулярного аппарата, врач всегда имеет дело с целостной реакцией организма, а не с вестибулярными реакциями в чистом виде, что, как правило, недооценивается.
Человек не замечает сложной и тонкой работы вестибулярного аппарата. Вестибулярный аппарат “напоминает” о своем существовании лишь тогда, когда возникает патология лабиринта или человек попадает в неестественные с филогенетической точки зрения условия (мореплавание, воздухоплавание, полеты в космос), вызывающие пространственные иллюзии и укачивание.
Ч.Шеррингтон (Sherrington Ch.S., 1906), назвал вестибулярный аппарат главным проприоцептором организма. В то же время, он подчеркнул, что вестибулярный аппарат находится в тесном взаимодействии с другрими проприоцепторами, расположенными в мышцах, сухожилиях, связках, суставных сумках, и предложил рассматривать их как вестибуло-проприоцептивный функциональный комплекс.
Действительно, и вестибулярный аппарат и проприоцепторы тела являются датчиками положения головы и тела в пространстве.Совместно, они дают информацию о взаиморасположении головы, туловища и конечностей. Отолитовый аппарат это специализированный гравитационный датчик. С некоторыми оговорками его можно назвать дистантным проприоцептором, так как он воспринимает внешнее гравитационное поле (направление вектора гравитации). Остальные проприоцепторы информируют о положении тела и конечностей за счет перераспределения на них нагрузки. Вестибулярный аппарат это не только датчик положения, а еще и акцелерометр (датчик ускорений). Порог раздражения полукружных каналов составляет 302 (по Маху), а отолитового аппарата 0,01g (по Квиксу). Благодаря акцелерометрическим свойствам вестибулярного аппарата в процессе филогенеза и онтогенеза организмом вырабатываются адекватные реакции на то или иное активное перемещение головы и тела в пространстве. Вестибулярный аппарат санкционирует начало ритмической реакции глаз (нистагма) и вызывает быструю коррекцию тонуса мышц тела. Такие влияния осуществляются за счет прямых вестибулоспинальных и вестибулоокуломоторных связей. Кроме прямых команд на мышцы туловища и конечностей вестибулярный аппарат параллельно посылает импульсы о воздействии в мозжечок, являющийся центром координации проприоцептивной чувствительности. В мозжечке сравнивается информация о воздействии с вестибулярного аппарата и эффекте изменения тонуса мышц с проприоцепторов тела по заднему и переднему спиномозжечковым трактам (Флексига и Говерса). Мозжечок через вестибулярные ядра (Дейтерса) осуществляет коррекцию ответной соматической реакции. Это циклический сенсомоторный процесс оценки положения – действия – оценки результата действия.
Описанная автоматизорованная вестибулопроприоцептивная система помимо нашей воли регулирует равновесие и установку тела, головы и глаз благодаря своему высшему центру – мозжечку.
В безусловнорефлекторной регуляции мышечного тонуса принимает участие и экстрапирамидная система. Часть аксонов клеток ядер Дейтерса и Швальбе формируют tr.vestibulothalamicus, заканчивающийся на клетках центральных ядер таламуса, меньшая часть аксонов которых следует к медиальным ядрам таламуса (чувствительный подкорковый центр экстрапирамидной системы).
В организме существует еще несколько сенсорных систем восприятия пространства – зрительная, слуховая, тактильная и др. дающая представление о гравитационной вертикали. Человек более устойчив с открытыми глазами, чем с закрытыми. Глазодвигательные центры зрительной системы взаимосвязаны с вестибулярными ядрами и мозжечком посредством мадиального продольного пучка. Он осуществляет подсознательную координацию движения головы и глаз. Зрительная система может в значительной степени компенсировать нарушение функции вестибулярного аппарата.
Осознание положения и перемещений головы в пространстве происходит в коре полушарий большого мозга. Большая часть аксонов клеток центральных ядер таламуса направляется через заднюю ножку внутренней капсулы в кору средней и нижней извилин височной доли головного мозга (корковое представительство вестибулярного аппарата). Корковым центром осознанной проприоцептивной чувствительности, имульсы которой передаются по спинномозговым пучкам Голля и Бурдаха, являются передняя и задняя центральные извилины, а также верхняя теменная долька – центр схемы тела. Третьи нейроны этого пути также имеют связи с подкорковым центром экстрапирамидной системы. Зрительная информация о пространстве поступает в затылочную долю коры головного мозга.
Каждый корковый центр обладает мономодальной информацией, на основании которой, благодаря ассоциативным связям, вырабатывается полимодальное ощущение пространства. В процессе филогенеза и онтогенеза головной мозг привыкает к определенной комбинации полимодальной информации, которая для него понятна (привычна, естественна). Если же человек попадает в непривычные условия, например, первый раз трогается на велосипеде, то возникает головокружение как результат неестественного сочетания информации зрительной вестибулярной и проприоцептивной систем. Не имея программы поддержания равновесия на велосипеде, он многократно падает, но через определенное время тренировок может свободно ездить на нем. Необходимо отметить, что непривычная информация быстрее становится привычной при активных действиях самого человека. Это объяснимо тем, что чаще всего оценка перемещения головы и тела в пространстве происходит в процессе совершения активного целенаправленного двигательного акта, реализуемого посредством пирамидного тракта. Сама мотивация, являясь системообразующим фактором, служит мощным адаптогеным средством модификации динамического восприятия пространства и выработки двигательного стереотипа. Яркими примерами тому служат акробатические способности человека, занимающегося фристайлом или виндсерфингом.
Для обеспечения любой функции необходима сенсорная информация (сенсорика). В функциональной системе равновесия, установки тела, головы и глаз – это информация о положении головы, туловища и конечностей в пространстве, а также их взаиморасположениии. Сенсорная информация используется в мозжечковой и экстрапирамидной регуляции равновесия, а также анализируется корой головного мозга. Нашему сознанию представляется интегральная полимодальная оценка положения и перемещения в пространстве.
Сенсорика служит для организации многочисленных простых и сложных двигательных программ. Двигательные программы (моторика) могут быть филогенетически закрепленными и приобретенными в процессе онтогенеза и служат для поддержания равновесия тела в статике и динамике, а также сочетанного поворота головы и глаз в процессе ориентировочных реакций на световой и звуковой раздражители.
Сенсомоторные акты обеспечиваются за счет общего и избирательного (в отдельных группах мышц) повышения уровня обмена веществ, что достигается благодаря нейрогуморальным реакциям вегетативной и эндокринной систем (трофика).
Так как вестибулярные ядра имеют сенсорные (кортикальные), соматические (глазодвигательные и спинальные) и вегетативные связи, то при стимуляции вестибулярного аппарата возникает три вида реакций: âåñòèáóëî-ñåíñîðíûå, âåñòèáóëî-ñîìàòè÷åñêèå è âåñòèáóëî-âåãåòàòèâíûå. Эти термины подчеркивают вестибулярный генез реакций, что далеко не исчерпывает сути дела, так как все вестибулогенные реакции являются системными реакциями организма.


Достарыңызбен бөлісу:
1   ...   27   28   29   30   31   32   33   34   ...   222




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет