|
PROBLEM STATEMENT:
It is required to find the solutions of Heat Equation with moving (known) boundary conditions:
2
1
2
2
1
1
x
u
a
t
u
,
)
(
)
(
t
x
t
,
0
t
2
2
2
2
2
2
x
u
a
t
u
,
x
t)
(
,
0
t
I.C:
0
)
0
,
0
(
1
u
,
)
(
)
0
,
(
2
x
x
u
(1) ,
0
)
0
,
(
2
u
411
B.C:
)
(
)
(
1
1
t
bu
t
u
a
t
x
(2),
)
(
2
2
)
(
1
1
t
x
t
x
fu
x
u
e
du
x
u
c
,
0,
0
d
f
(3)
)
),
(
(
)
),
(
(
2
1
t
t
u
t
t
u
(4);
PROBLEM SOLUTION:
Solutions is represented in the polynomial form of Integral Error Functions:
0
1
1
1
2
2
)
(
)
,
(
n
n
n
n
n
n
t
a
x
erfc
i
B
t
a
x
erfc
i
A
t
t
x
u
,
0
2
2
2
2
2
)
(
)
,
(
n
n
n
n
n
n
t
a
x
erfc
i
D
t
a
x
erfc
i
C
t
t
x
u
;
where
,
,
,
n
n
n
n
A B C D
has to be determined.
Using the L’Hospitalle’s rule for (1) represented in the following form
0
2
lim(
)
0
2
n
n
n
t
x
t C i erfc
a
t
,
n
n
n
n
n
n
n
n
t
n
n
n
t
D
a
x
n
x
t
a
x
a
t
a
x
erfc
i
D
t
a
x
erfc
i
D
t
)
2
(
!
2
2
)
2
(
2
lim
2
)
(
lim
2
2
2
2
0
2
0
0
2
2
( )
! (2 )
n
n
n
n
x
D
x
n
a
,where
0
)
(
!
)
0
(
)
(
n
n
n
x
n
x
By using Taylor series we determine
)
0
(
)
(
2
)
(
2
1
n
n
n
n
a
D
;
From (2) by substitution
t
we are ready to use the Leibniz’s formula
n
l
l
l
n
n
v
u
l
n
v
u
0
)
(
)
(
)
(
)
*
(
, we obtain
n
l
l
n
l
n
n
n
n
l
l
n
l
n
n
n
a
erfc
i
l
n
a
B
a
erfc
i
l
n
a
A
0
)
(
1
2
1
)
(
1
1
0
)
(
1
2
1
)
(
1
1
2
)
(
)
(
2
2
)
(
)
(
2
First of all, we should solve this part, which
412
( )
2
1 (
)
1
0
1
(
)
(
)
2
l
n
n
n l
n
l
n
i
erfc
l
a
0
2
1
1
1
(
)
...
0
2
n
n
n
n
i
erfc
a
2
0
1
1
1
(
)
2
n
n
n
n
i
erfc
n
a
.
Using Faa Di Bruno’s formula for each part of
( )
2
1 (
)
1
0
1
(
)
(
)
2
l
n
n
n l
n
l
n
i
erfc
l
a
,
we get
1
1
2
1
2
)
(
)!*
1
(
*
a
erfc
i
n
n
n
=
!
1
2
)
(
2
)
(
!
1
)
1
(
)!*
1
(
*
1
1
1
2
1
2
2
1
1
b
n
b
a
a
erfc
i
b
n
n
. . . . . . . . . . . . . . . . . . .
n
n
n
a
erfc
i
1
2
1
1
2
)
(
=
1
1
2
1
2
2
1
2
1
1
!
2
)
(
2
)
(
exp
2
)
(
)
1
(
...
1
j
b
n
b
n
n
n
n
j
a
a
a
b
b
n
j
,
where
!
!...
!
...
1
1
n
n
b
b
n
b
b
n
. Let’s say that where
2
(
)
can be represented in the following form:
n
n
n
n
a
a
a
...
2
1
2
...
2
)
(
1
0
1
1
1
2
1
0
1
2
and
1
1
1
)
1
(
1
2
...
2
1
2
)
(
n
n
a
a
.
Consider
n
m
n
n
a
0
1
2
1
)
(
By substitution
0
,we have
'
1
0
2
)
0
(
a
,
'
1
1
2
)
0
(
a
, . . . ,
'
1
)
(
2
)
0
(
a
n
n
1
1
1
1
1
2
0
1
1
2
1
( )!
...
!
2
1!
b
n
b
a
n
i
erfc
b
a
( )
2
1
1
0
0
1
1
1
1
(0)
2
0
*
( 1)
exp
...
2
2
!
j
b
j
n
n
n
n
j
n
n
a
b b
a
a
j
By cancelling other parts we get
!
1
2
2
!
1
!*
*
1
1
1
1
1
0
2
1
1
0
b
n
b
k
n
n
a
a
erfc
i
b
n
A
.
For the first part of first boundary condition (2), we obtain
k
n
n
n
n
n
a
erfc
i
B
a
erfc
i
A
b
n
a
a
0
1
0
2
1
0
2
1
2
1
1
2
2
!
!
4
(5)
By using Leibniz’s and Faa Di Bruno’s formula, we get for second part of condition (2),
413
k
n
n
n
n
n
a
erfc
i
B
a
erfc
i
A
n
b
0
1
0
2
1
0
2
2
2
!
(6)
And by adding (5) and (6) we have
k
n
n
n
n
n
a
erfc
i
B
a
erfc
i
A
n
a
a
0
1
0
2
1
0
2
2
1
1
2
2
!
4
+
k
n
n
n
n
n
a
erfc
i
B
a
erfc
i
A
n
b
0
1
0
2
1
0
2
2
2
!
=
'
0
n
(7)
For the second boundary condition(3), we obtain
k
n
n
n
n
n
n
n
n
n
k
n
k
n
n
n
n
n
n
n
n
n
k
n
a
erfc
i
D
a
erfc
i
C
n
f
a
erfc
i
D
a
erfc
i
C
n
a
e
a
erfc
i
B
a
erfc
i
A
n
d
a
erfc
i
B
a
erfc
i
A
n
a
c
0
2
0
2
0
2
0
2
2
0
2
0
2
2
1
0
1
0
1
0
1
0
2
1
0
2
0
2
1
1
2
2
!
2
2
!
4
2
2
!
2
2
!
4
(8)
For the third boundary condition (4)
k
n
n
n
n
n
k
n
n
n
n
n
a
erfc
i
D
a
erfc
i
C
a
erfc
i
B
a
erfc
i
A
0
2
0
2
0
0
1
0
1
0
2
2
2
2
(9)
From (9) we can find
n
C
1
2
0
2
0
)
(
2
1
1
0
1
0
2
2
)
0
(
2
2
2
I
a
erfc
i
a
erfc
i
a
a
erfc
i
B
a
erfc
i
A
C
n
n
n
n
n
n
n
n
n
n
, where
0,1, 2,...,
n
k
From (8) we can find
n
A
Let’s take right side as G , then we obtain
n
A
2
1
0
1
0
2
2
1
1
1
0
1
0
2
2
1
1
2
2
2
2
I
a
erfc
di
a
erfc
i
a
c
a
erfc
di
a
erfc
i
a
c
B
G
A
n
n
n
n
n
n
where
0,1, 2,...,
n
k
From (6) we can find
n
B
)
0
(
2
2
!
2
2
!
4
)
(
0
0
1
0
1
0
2
1
0
2
1
0
2
2
2
1
1
n
k
n
k
n
n
n
n
n
n
n
a
erfc
i
B
a
erfc
i
I
n
b
a
erfc
i
B
a
erfc
i
I
n
a
a
414
1
0
1
0
2
2
1
1
1
0
1
0
2
2
1
1
2
)
(
2
2
4
!
2
2
4
!
)
0
(
a
erfc
bi
a
erfc
i
a
a
n
a
erfc
bi
a
erfc
i
a
a
n
I
B
n
n
n
n
n
n
, where
0,1, 2,...,
n
k
Достарыңызбен бөлісу: |
|
|