Сборник предназначен студентам, интернам, резидентам, магистрантам



Pdf көрінісі
бет96/333
Дата18.11.2023
өлшемі4,77 Mb.
#124365
түріСборник
1   ...   92   93   94   95   96   97   98   99   ...   333
Байланысты:
sbornikkonferenczii19iyunya2023

Introduction. 
In the context of clinical practice, ML algorithms can be trained 
on large volumes of patient data, such as electronic health records, medical imaging 
scans, genetic information, and clinical notes. By learning from these datasets, ML 
models can assist healthcare professionals in various tasks, including disease 
diagnosis, risk prediction, treatment planning, and patient monitoring. 
ML algorithms can detect subtle patterns and associations within medical data 
that may not be easily recognizable by humans. They can identify key features and 
markers indicative of specific conditions or treatment outcomes. This enables 
healthcare providers to make more accurate and personalized decisions, leading to 
improved patient outcomes and efficient resource utilization. 
Moreover, ML models can continuously learn and adapt from new data
allowing for iterative improvements and real-time updates to clinical decision 
support systems. This iterative process enhances the precision and reliability of 
predictions over time, enabling healthcare professionals to stay updated with the 
latest evidence-based practices. 
While ML has great potential in clinical practice, it is important to ensure 
proper validation, transparency, and ethical considerations. Rigorous evaluation and 
validation of ML algorithms are crucial to ensure their reliability and safety before 
their integration into healthcare workflows. Additionally, maintaining patient 
privacy, data security, and maintaining a human-centric approach in decision-
making remain essential aspects of ML adoption in clinical settings. 
In summary, ML in clinical practice harnesses the power of data and 
algorithms to augment healthcare professionals' decision-making processes 
(Fig. 1)

By analyzing medical data, ML algorithms can provide valuable insights, improve 
diagnostic accuracy, and enhance patient care, ultimately leading to better health 
outcomes. 


103 


Достарыңызбен бөлісу:
1   ...   92   93   94   95   96   97   98   99   ...   333




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет