Истории и востоковедения


Magnetic field of a long, straight wire



Pdf көрінісі
бет35/54
Дата09.05.2023
өлшемі1,14 Mb.
#91228
1   ...   31   32   33   34   35   36   37   38   ...   54
Magnetic field of a long, straight wire 
A current
‐carrying wire generates a magnetic field of magnitude B in circles around the wire. The 
equation for the magnetic field at a distance r from the wire is 
, where I is the current in the wire and μ (the Greek letter mu) is 
the proportionality constant. The constant, called the permeability constant, 
has the value 

The direction of the field is given by a second right
‐hand rule, shown in Figure 4. Using the second 
right-hand rule you can determine the direction of the magnetic field resulting from a current. 
Grasp the wire so that your thumb points in the direction of the current. 
Your fingers will curl around the wire in the direction of the magnetic field. 
Ampere's law 
Ampere's law allows the calculation of magnetic fields. Consider the circular path around 
the current. The path is divided into small elements of length (Δ l). Note the component of B 
that is parallel to l and take the product of the two to be B 
∥ l. Ampere's law states that the sum 
of these products over the closed path equals the product of the current and μ , 

Magnetic fields of the loop, solenoid, and toroid 
A current generates a magnetic field, and the field differs as the current is shaped into (a) a loop, 
(b) a solenoid (a long coil of wire), or (c) a toroid (a donut
‐shaped coil of wire). The equations for the 
magnitudes of these fields follow. The direction of the field in each case can be found by the second 
right
‐hand rule. Figure 5 illustrates the fields for these three different configurations. 
71 


Figure 5 
Magnetic field resulting from (a) a current loop, (b) a solenoid, and (c) a toroid. 
a) The field at the center of a single loop is given by 
, where r 
is the radius of the loop. 
b) The field due to a solenoid is given by B = μ 

NI, where N is the 
number of turns per unit length. 
c) The field due to a toroid is given by
, where R is the radius 
to the center of the toroid. 
(Adopted from 
www.cliffsnotes.com

 
 
 
 


Достарыңызбен бөлісу:
1   ...   31   32   33   34   35   36   37   38   ...   54




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет