Истории и востоковедения



Pdf көрінісі
бет5/54
Дата09.05.2023
өлшемі1,14 Mb.
#91228
1   2   3   4   5   6   7   8   9   ...   54
Active vocabulary 
Word 
Pronunciation 
Translation 
accelerator, n. 
/əkˈseləreɪtər/ 
акселератор 
annihilation, n. 
/əˌnaɪɪˈleɪʃən/ 
уничтожение, syn. destruction, 
ravage 
attempt, n. 
/əˈtempt/ 
попытка, syn. effort, try 
boson, n. 
/ˈbəʊsən/ 
бозон 
charge, n. 
/tʃɑːdʒ/ 
заряд, нагрузка, загрузка 
charge parity 
/tʃɑːdʒ ˈpærəti 
нарушение СР-инвариантности 
violation 
ˌvaɪəˈleɪʃən/ 
(комбинированной четности, 
СР-симметрии) 
coalesce, v. 
/kəʊəˈles/ 
коалесцировать 
consequence, n. 
/ˈkɒnsɪkwəns/ 
последствие, результат, syn. 
outcome, result 
dimension, n. 
/ˌdaɪˈmenʃən/ 
измерение, размерность 
explosion, n. 
/ɪkˈspləʊʒən/ 
взрыв, syn. burst 
goal, n. 
/ɡəʊl/ 
цель, syn. aim, purpose 
hadron, n. 
/ˈhædrɒn/ 
адрон 
helium, n. 
/ˈhiːliəm/ 
гелий 
hydrogen, n. 
/ˈhaɪdrədʒən/ 
водород 
hypothesis, n. 
/haɪˈpɒθəsiːz/ 
гипотеза 
interact, v. 
/ˌɪntərˈækt/ 
взаимодействовать 


15 
lepton, n. 
/ˈleptɑn/ 
лептон 
merge, v. 
/mɜːdʒ/ 
сливать(ся), соединять(ся) 
mutual, adj. 
/ˈmjuːtʃuəl/ 
общий, взаимный, syn. 
commutual 
nucleus, n. 
/ˈnjuːkliəs/ 
ядро 
particle, n. 
/ˈpɑːtɪkl/ 
частица 
plasma, n. 
/ˈplæzmə/ 
плазма 
quark, n. 
/kwɑːrk/ 
кварк 
renormalization, n. 
/ˌrɪnɔrmələˈzeɪʃən/ 
перенормировка 
residue, n. 
/ˈrezɪdjuː/ 
остаток, осадок 
string theory 
/strɪŋ ˈθɪəri/ 
теория струн 
substance, n. 
/ˈsʌbstəns/ 
вещество, субстанция, syn. 
matter, stuff 
validate, v. 
/ˈvælɪdeɪt/ 
утверждать, подтверждать, syn. 
affirm, confirm 
vacuum, n. 
/ˈvækjuːm/ 
вакуум 
 
 
READING 
Read and translate the text using a dictionary if necessary: 
Standard Model of particle physics, which was formulated in the 
1970s, describes the universe in terms of Matter (fermions) and Force 
(bosons). The Standard Model consists of 17 particles. Twelve of the 17 
fundamental matter-particles are fermions: 6 quarks and 6 leptons. The 
remaining five particles are bosons, four of which are physical 
manifestations of the forces through which particles interact. At high 
energies, the weak nuclear force merges with electromagnetic force. 
The Higgs boson is associated with the Higgs field which gives mass to 
electrons, elementary quarks, Z and W bosons, and the Higgs boson itself. It 
would be wise to mention that the strong nuclear force associated with the 
gluon particle gives mass to atomic nuclei, by binding together the three 
quarks inside protons and neutrons, and all attempts to include gravitons or 
gravity into the Standard Model have failed. Gluons interact only with 
quarks and themselves, but all the other bosons interact with both leptons 
and quarks. Quarks carry both electrical and color charge, but leptons have 
no color charge, and only non-neutrino leptons have electrical charge. 
Neutrinos carry neither electrical nor color charge. 


16 
According to Big Bang theory, the existing universe emerged from an 
explosion in a vacuum that occurred 13.7 billion years ago. The four forces 
were unified until 10−43 seconds after the Big Bang, after which first 
gravity and then strong nuclear force separated from the other two forces. 
At 10−12 seconds after the Big Bang electromagnetism separated from the 
weak nuclear force, and the universe was filled with a hot quark-gluon 
plasma that included leptons and antiparticles. At 10−6 seconds hadrons 
began to form. Most hadrons and antihadrons were eliminated by 
annihilation, leaving a small residue of hadrons by one second post-Big 
Bang. Between one and three seconds after Big Bang the universe was 
dominated by leptons/antileptons until annihilation of these particles left 
only a small residue of leptons. 
The universe was dominated by photons created by all of the 
matter/antimatter annihilations, and the predominance of matter over 
antimatter had been established. Between 3 and 20 minutes after the Big 
Bang protons and neutrons began to combine to form atomic nuclei. A 
plasma of electrons and nuclei (ionized hydrogen and helium) existed for 
300,000 years until the temperature dropped to 5,000ºC when hydrogen and 
helium atoms formed. 
If matter and antimatter were perfectly symmetrical, the cooling of the 
universe would have resulted in particle/antiparticle annihilation that would 
have left the universe filled only with photons. However, for every billion 
mutual annihilations a particle of matter remained comprising the existing 
matter of the universe. The predominance matter over antimatter is a 
consequence of charge-parity violation (CP violation). About 99% of the 
photons in the universe (the cosmic microwave background) are the result
of Big Bang annihilations. Photons from stars are a trivial contribution, by 
comparison. 
The standard model used by cosmologists predicts that the universe is 
composed of 5% ordinary matter, 27% cold dark matter, and 68% dark 
energy. Dark matter reputedly caused hydrogen to coalesce into stars, and is 
a binding force in galaxies. Dark energy is accelerating the expansion of the 
universe. The cosmologists' standard model also predicts that within the
first 10−32 of a second after the Big Bang, the universe doubled in size 60 
times in a growth spurt known as inflation. 
Dark matter does not interact with the electromagnetic force, thus 
making it transparent and hard to detect, despite the fact that dark matter 
must permeate the galaxy. Unlike visible matter, dark matter is nonbaryonic 


17 
- its composition is outside of the (unextended) Standard Model. Neutrinos 
may be a low-mass example of dark matter. Invisible Weakly Interacting 
Massive Particles (WIMPs having thousands of times the mass of a proton) 
have been hypothesized as being the substance of dark matter. It is believed 
that the effect of Earth moving through a dark matter «wind» results in a 
10% greater dark matter flux when it is summer in the Northern
Hemisphere than when it is winter. Some physicists believe that dark matter 
does not exist, but that theories of gravitation need to be revised (as is 
proposed by modified Newtonian dynamics). 
The most prosaic goal of the Large Hadron Collider (LHC, the 
enormous particle accelerator that first began operation in September 2008 
at CERN, Europe's particle physics laboratory near Geneva, Switzerland) 
was to find the Higgs boson. The Higgs boson adheres to the W and Z 
bosons to give them mass, but does not adhere to photons (leaving photons 
massless). The more particles interact with the Higgs field, the more
massive they become. The bosons that mediate electromagnetism (photons) 
and the strong force (gluons) are massless, but the bosons that mediate the 
weak force (Z and W bosons) have a mass about a hundred times greater 
than the mass of a proton. The Higgs field, not the Higgs boson, gives 
energy to particles. Because of Einstein's E = mc2, giving energy is 
equivalent to giving mass. Heavier particles interact with the Higgs field 
more than lighter particles, the heavy top quark more than any other

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   54




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет