W = F·s·cosΘ = m·g·s·cos90° = 70·9,8·10·1 = 6860 Дж
Потенциальная энергия тела, поднятого на высоту h над поверхностью Земли: U = mgh
|
3. Консервативные силы.
В физике консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.
В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной (см. Фундаментальные взаимодействия). В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила упругости, сила кулоновского (электростатического) взаимодействия. Примером неконсервативной силы является сила трения.
Некоторые авторы консервативными силами считают механические силы, работа которых по любой замкнутой траектории равна нулю и зависящие только от координат[2][3]. Если механические силы зависят не только от координат, но и скоростей и направлены всегда перпендикулярно скорости, то они называются гироскопическими силами[4][5].
4. Поле центральных сил.
Центральное поле сил — поле, характерное тем, что направление силы, действующей на частицу в любой точке пространства, проходит через неподвижный центр, а величина силы зависит только от расстояния до этого центра.
5. Закон сохранения механической энергии.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения энергии.
6. Закон сохранения момента импульса.
Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — физический закон, согласно которому сумма моментов импульса всех тел механической системы остаётся постоянной, пока воздействующие на данную систему моменты внешних сил скомпенсированы.
7. Постулаты Эйнштейна.
В основе специальной теории относительности А. Эйнштейна лежат два постулата, смысл которых можно выразить так :
1. При одинаковых условиях, реализованных по отдельности в двух системах отсчета - некоторой инерциальной системы К и системы К', движущейся равномерно и прямолинейно относительно системы I - любые физические процессы в этих системах отсчета протекают одинаково.
2. В природе существует предельная (максимальная) скорость распространения физических сигналов (взаимодействий), одна и та же во всех инерциальных системах отсчета. Эта максимальная скорость совпадает со скоростью света в вакууме, она не зависит от движения источника и приемника света и равна с = 300000 км/с .
Из первого принципа следует: если для данной задачи (некоторого класса задач) найдена инерциальная система отсчета I, то для этой задачи существует и бесчисленное множество инерциальных систем типа II, движущихся равномерно прямолинейно относительно I. Скорости всех систем II меньше с. Системы отсчета необходимо связывать с телами, а скорости тел не могут равняться или превосходить максимальную скорость света в вакууме, равную с. Скорости тел строго меньше максимальной.
Развитие науки показало, что оба принципа Эйнштейна подтверждаются всей совокупностью экспериментальных и теоретических знаний современной физики.
Из принципов Эйнштейна следует: одновременность разноместных событий не является абсолютной, независимой от систем отсчета.
Действительно, пусть от лампы L, находящейся на середине платформы, движущейся со скоростью V, начал распространяться свет.
8. Преобразования Лоренца. Следствия из преобразований Лоренца.
Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'.
Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x' системы K' происходит процесс длительностью τ0 = t'2 – t'1 (собственное время), где t'1 и t'2 – показания часов в системе K' в начале и конце процесса. Длительность τ этого процесса в системе K будет равна
Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод об относительности одновременности. Пусть, например, в двух разных точках системы отсчета K' (x'1 ≠ x'2) одновременно с точки зрения наблюдателя в K' (t'1 = t'2 = t') происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь
Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываются неодновременными. Более того, знак разности t2 – t1 определяется знаком выражения υ(x'2 – x'1), поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.
Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере.
Пусть в системе отсчета K' вдоль оси x' неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов (рис. 4.4.1(a)), система K' движется вдоль оси x системы K со скоростью υ. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня. В силу равноправия обоих направлений свет в системе K' дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t'. Относительно системы K концы стержня движутся со скоростью υ так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 4.4.1(b)).
9. Интервал между событиями.
Достарыңызбен бөлісу: |