3. . Для построения графика ``по отрезкам'' вычислим значение функции в точках 1, 2, 3, 0, 4 (см. рис. (??)).
4. . График разности модулей строиться аналогично (см. рис. (??)).
Анализируя вид графиков 1, 2 и 3, можно предположить, а затем и доказать, что сумма модулей линейных выражений вида достигает своего наименьшего значения либо в единственной точке, если число модулей нечетно, либо во всех точках некоторого отрезка, если число модулей чётно. График суммы нечетного числа модулей линейных выражений имеет форму клина, а график суммы чётного числа модулей имеет участок параллельный оси абсцисс. Более точно:
Теорема Пусть корни подмодульных выражений упорядочены по возрастанию . Тогда если число слагаемых нечётно и , то наименьшее значение функции достигается в точке , а если число слагаемых чётно и , то наименьшее значение функции достигается во всех точках отрезка . Используем утверждение для решения задачи, предлагавшейся на одной из олимпиад Санкт-Петербургского государственного университета.