Лекция 3 Data Mining – технология добычи данных Технология Data Mining



бет1/18
Дата28.04.2023
өлшемі0,87 Mb.
#87620
түріЛекция
  1   2   3   4   5   6   7   8   9   ...   18
Байланысты:
Лекция3

Лекция 3

  • Data Mining – технология добычи данных

Технология Data Mining

  • Data Mining переводится как "добыча" или "раскопка данных". Нередко рядом с Data Mining встречаются слова "обнаружение знаний в базах данных" (knowledge discovery in data bases) и "интеллектуальный анализ данных". Их можно считать синонимами Data Mining. Возникновение всех указанных терминов связано с новым витком в развитии средств и методов обработки данных.
  • До начала 90-х годов, людям, не имевшем представления о распознавании образов и факторном анализе, казалось, не было особой нужды переосмысливать ситуацию в этой области. Все шло своим чередом в рамках направления, называемого прикладной статистикой. Теоретики проводили конференции и семинары, писали внушительные статьи и монографии, изобиловавшие аналитическими выкладками.
  • Вместе с тем, практики всегда знали, что попытки применить теоретические разработки для решения реальных задач в большинстве случаев оказываются бесплодными. Но на озабоченность практиков до поры до времени можно было не обращать особого внимания — они решали главным образом свои частные проблемы обработки небольших локальных баз данных.

В связи с совершенствованием технологий записи и хранения данных на людей обрушились колоссальные потоки информационной руды в самых различных областях. Деятельность любого предприятия (коммерческого, производственного, медицинского, научного и т.д.) теперь сопровождается регистрацией и записью всех подробностей его деятельности. Что делать с этой информацией? Стало ясно, что без продуктивной переработки потоки сырых данных образуют никому не нужную свалку.

  • В связи с совершенствованием технологий записи и хранения данных на людей обрушились колоссальные потоки информационной руды в самых различных областях. Деятельность любого предприятия (коммерческого, производственного, медицинского, научного и т.д.) теперь сопровождается регистрацией и записью всех подробностей его деятельности. Что делать с этой информацией? Стало ясно, что без продуктивной переработки потоки сырых данных образуют никому не нужную свалку.
  • Специфика современных требований к такой переработке следующие:
  • Данные имеют неограниченный объем.
  • Данные являются разнородными (количественными, качественными, текстовыми).
  • Результаты обработки должны быть конкретны и понятны.
  • Инструменты для обработки сырых данных должны быть просты в использовании.


Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   18




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет