Б қосымшасының жалғасы
faces = np.asarray(faces)
faces = np.expand_dims(faces)
emotions = pd.get_dummies(data['emotion']).as_matrix()
return faces, emotions
def preprocess_input(x, v2=True):
x = x.astype('float32')
x = x / 255
if v2:
x = x - 0.5
x = x * 2
return x
data_generator = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=.1,
horizontal_flip=True)
model = mini_XCEPTION(input_shape, num_classes)
regularization = l2(l2_regularization)
img_input = Input(input_shape)
x = Conv2D(8, (3, 3), strides=(1, 1), kernel_regularizer=regularization,
use_bias=False)(img_input)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(8, (3, 3), strides=(1, 1), kernel_regularizer=regularization,
use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
residual = Conv2D(16, (1, 1), strides = (2, 2), padding = 'same', use_bias =
False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(16, (3, 3), padding='same', kernel_regularizer =
regularization, use_bias = False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(16, (3, 3), padding='same', kernel_regularizer =
regularization, use_bias = False)(x)
x = BatchNormalization()(x)
|