Объемный компрессор


Одноступенчатый поршневой компрессор



бет2/5
Дата24.03.2022
өлшемі37,93 Kb.
#28641
1   2   3   4   5
Байланысты:
Компрессорные установки

Одноступенчатый поршневой компрессор. На рис.17.1,а показана принципиальная схема одноступенчатого поршневого компрессора. Коленчатый вал компрессора приводится во вращение от электродвигателя или от поршневого двигателя внутреннего сгорания. При движении поршня от ВМТ к НМТ в цилиндр с охлаждаемой рубашкой через автоматически открывающийся клапан А из окружающей среды всасывается газ. Нагнетательный клапан В закрыт под действием давления газов в резервуаре, которое больше атмосферного. При обратном движении поршня от НМТ к ВМТ газ начинает сжиматься, давление его увеличивается, и всасывающий клапан закрывается. Процесс сжатия продолжается до тех пор, пока давление в цилиндре не станет равным (практически несколько больше) давлению в резервуаре. Тогда клапан В открывается, и начинается процесс нагнетания сжатого газа в резервуар до тех пор, пока поршень не придет в ВМТ.

Рассмотрим рабочий процесс в рV - координатах для идеального одноступенчатого компрессора (идеального в том смысле, что в нем не учитываются потери на трение, а утечки газа и объем вредного пространства (объем между крышкой цилиндра и днищем поршня при его положении его в ВМТ) принимаются равными нулю, т. е. на рис.17.1,б положение ВМТ будет совпадать с осью ординат). Обозначим: Vh - рабочий (полезный) объем цилиндра; P1 — давление окружающей среды; P2 - давление газа в резервуаре; процессы: D - 1 - всасывание; 1-2 - сжатие; 2-C - нагнетание.



С началом нового хода поршня снова открывается всасывающий клапан, давление в цилиндре падает от Р2 до Р1 теоретически мгновенно, т. е. по вертикали С-D, и рабочий процесс повторяется, завершаясь, таким образом, за два последовательных хода поршня. Следовательно, компрессор представляет собой двухтактную машину. Площадь теоретической индикаторной диаграммы D-1-2-C, которая графически изображает круговой процесс, измеряет работу, расходуемую компрессором за один оборот его вала. Нужно иметь в виду условность названия кругового процесса (цикла) компрессора, так как всасывание и нагнетание не являются термодинамическими процессами, поскольку они происходят при переменном количестве газа. В этом состоит отличие индикаторной диаграммы от pх-диаграммы, которая строится для постоянного количества рабочего тела. В индикаторной диаграмме D-1-2-C сжатие газа 1-2 - термодинамический процесс, ибо в нем участвует постоянное количество газа. Очевидно, что при одном и том же конечном давлении P2 конечный объем х2будет различен в зависимости от характера кривой процесса сжатия 1-2, а значит, будет различна и работа, затрачиваемая на привод компрессора.

Как следует из рис. 17.1б, наиболее выгодным процессом сжатия по затрате работ извне для привода компрессора является изотермический процесс 1-2'. В этом случае соблюдаются также идеальные условия для сохранения качества смазочных масел (вязкостьтемпература вспышки и др.). Однако изотермическое сжатие газа в компрессоре практически неосуществимо, и кривая сжатия обычно располагается между изотермой и адиабатой и может быть принята за политропу с показателем n = 1,2—1,25. Чем интенсивнее будет охлаждение газа при сжатии (чаще всего водой, проходящей через рубашку компрессора), тем больше будет политропа сжатия 1-2 отклоняться от адиабаты 1-2" в сторону изотермы 1-2'. С уменьшением теплообмена показатель n увеличивается. Очевидно также, что с увеличением n при одном и том же отношении P2/P1 конечная температура сжатого газа Т2 будет возрастать по закону:Tn1P1-n1 = Tn2P1-n2

или T2 = T1(P2/P1)(n-1)/n . (17.1)

Например, при P1 = 0,1 МПа, t1 = 16°С и конечной температуре t2 = 160°С при адиабатном сжатии давление воздуха можно увеличить в 4 раза, а при политропном (n = 1,2) в 10 раз. То есть конечная температура сжатия Т2 зависит от характера процесса сжатия. Наиболее невыгодным процессом является адиабатное сжатие.

Абсолютное значение работы, затрачиваемой на сжатие 1 кг газа в одноступенчатом идеальном компрессоре (А0) может быть подсчитано так:

А0 = Асж + Анагн - Авсас = ò Рdv + Рv2 - Рv1 . (17.2)

По смыслу работы А0, Асж, Анагн являются отрицательными, а работа процесса всасывания Авсас - положительной, так как на ее совершение энергия не затрачивается (трение отсутствует), и сопротивление воздуха, находящегося справа под поршнем при ходе всасывания, не учитывается, ибо не принимается также во внимание положительная работа этого воздуха при сжатии и нагнетании.

В зависимости от характера процесса сжатия ò Рdv имеет значения:

для изотермического процесса:

Ат = Рv1ln(Р12);

для адиабатного процесса:

Аад = 1/(b – 1)(Pv– Рv2);

для политропного процесса:

Апол = 1/(n – 1)(Рv– Рv2).

Чтобы не иметь дело с отрицательными величинами при подсчете работы сжатия, их умножают на -1. Это дает:

Ат = Рv1ln(Р21); Аад = 1/(b – 1)(Pv– Рv1);

Апол = 1/(n – 1)(Рv– Р1v1).

Тогда теоретическая работа компрессора затрачиваемая на сжатие 1 кг газа, при изотермическом процессе сжатия выразится равенством:

Ат0 = Рv1ln(Р21); (17.3)

при адиабатическом процессе сжатия:

Аад0 = b/(b – 1)Pv1[(Р21(b - 1)/b – 1]; (17.4)

при политропном процессе сжатия:

Апол0 = n/(n – 1)Рv1[(Р21(n - 1)/n – 1]; (17.5)

При уменьшении производительности компрессора с увеличением давления сжатого воздуха и ухудшении при этом условий смазки из-за повышения температуры Т2 одноступенчатый компрессор становится непригодным для получения сжатого газа высокого давления. Обычно одноступенчатые компрессоры применяют для получения сжатого газа давлением не выше 0,8—1 МПа. При необходимости иметь сжатый газ более высокого давления используют многоступенчатые компрессоры.





Достарыңызбен бөлісу:
1   2   3   4   5




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет