Общая характеристика инструментальных методов анализа. Метрологические характеристики в количественном анализе



бет3/3
Дата14.10.2023
өлшемі3,9 Mb.
#113772
1   2   3
Байланысты:
лек2 2

При использовании некоторых методов математического моделирования с применением компьютерных программ можно получать более правильную градуировочную характеристику, в значительной мере учесть матричный эффект, воспроизвести действительную форму уравнения связи и обеспечить более высокое разрешение результатов, в результате чего повысить точность анализа, а порой снизить предел обнаружения.

При обработке результатов прямых измерений по правилам математической статистики предлагается следующий порядок операций:

1. В измерениях получают ряд значений величины x – выборку результатов: x1, x2, x3,….. xn, где n - число измерений.

2. Исключают грубые ошибки с помощью Q - критерия: где Х1, Х2 –соседние измерения,одно из которых сомнительно.

Если рассчитанное значение Q больше табличного при заданной доверительной вероятности β, сомнительная величина исключается.

3.Вычисляют среднее арифметическое выборки, исключив грубые ошибки:

4.Находят погрешность отдельного измерения: затем вычисляют квадраты погрешностей отдельных измерений и их сумму, заполняя таблицу:

5.Вычисляют дисперсию V измеряемой величины для данной выборки

6.Для характеристики воспроизводимости результатов находят стандартное отклонение отдельного измерения и относительное стандартное отклонение

7.Точность анализа характеризуют доверительным интервалом, для вычисления которого определяют среднеквадратичное отклонение от среднего арифметического

При заданной доверительной вероятности β по таблице 2 определяют коэффициент Стьюдента t и рассчитывают полуширину доверительного интервала

Если величина погрешности результата измерения Δx окажется сравнимой с величиной погрешности прибора δ, то в качестве полуширины доверительного интервала вычисляют:

8. Окончательный результат записывают в виде:


9. Оценивают относительную погрешность измерений:

При сопоставлении данных, полученных в различных сериях опытов с различной дисперсией, используют F-критерий (Фишера). Критерий Фишера позволяет сравнивать величины выборочных дисперсий двух рядов наблюдений.

Для вычисления нужно найти отношение дисперсий двух выборок, причем так, чтобы бόльшая по величине дисперсия находилась бы в числителе, а мéньшая – в знаменателе:

Если величина F, рассчитанная для двух сравниваемых серий опытов, не превышает табличное значение, то результаты опытов можно отнести к одной совокупности, т. е. полученные данные можно объединить.

Спасибо за внимание!



Достарыңызбен бөлісу:
1   2   3




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет