Случайные события
Случайные опыты (эксперименты), элементарные случайные события
(исходы). Вероятности элементарных событий. События в случайных
экспериментах и благоприятствующие элементарные события. Вероятности
случайных событий. Опыты с равновозможными элементарными событиями.
Классические вероятностные опыты с использованием монет, кубиков.
Представление событий с помощью диаграмм Эйлера. Противоположные
события, объединение и пересечение событий. Правило сложения
вероятностей. Случайный выбор. Представление эксперимента в виде дерева.
Независимые события. Умножение вероятностей независимых событий.
Последовательные независимые испытания. Представление о независимых
событиях в жизни.
Элементы комбинаторики
Правило умножения, перестановки, факториал числа. Сочетания и
число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с
большим числом равновозможных элементарных событий. Вычисление
вероятностей в опытах с применением комбинаторных формул. Испытания
355
Бернулли. Успех и неудача. Вероятности событий в серии испытаний
Бернулли.
Случайные величины
Знакомство со случайными величинами на примерах конечных
дискретных
случайных
величин.
Распределение
вероятностей.
Математическое ожидание. Свойства математического ожидания.
Понятие о законе больших чисел. Измерение вероятностей. Применение
закона больших чисел в социологии, страховании, в здравоохранении,
обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия
Геометрические фигуры
Фигуры в геометрии и в окружающем мире
Геометрическая
фигура.
Формирование
представлений
о
метапредметном понятии «фигура».
Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол,
биссектриса угла и ее свойства, виды углов, многоугольники, круг.
Осевая симметрия геометрических фигур. Центральная симметрия
геометрических фигур.
Многоугольники
Многоугольник, его элементы и его свойства. Распознавание некоторых
многоугольников. Выпуклые и невыпуклые многоугольники. Правильные
многоугольники.
Треугольники. Высота, медиана, биссектриса, средняя линия
треугольника. Равнобедренный треугольник, его свойства и признаки.
Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный
треугольники. Внешние углы треугольника. Неравенство треугольника.
Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат,
трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма,
ромба, прямоугольника, квадрата.
Окружность, круг
356
Окружность, круг, их элементы и свойства; центральные и вписанные
углы. Касательная и секущая к окружности, их свойства. Вписанные и
описанные окружности для треугольников, четырехугольников, правильных
многоугольников.
Геометрические фигуры в пространстве (объемные тела)
Многогранник и его элементы. Названия многогранников с разным
положением и количеством граней. Первичные представления о пирамиде,
параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и
простейших свойствах.
Отношения
Равенство фигур
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности
Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция.
Серединный
перпендикуляр
к
отрезку.
Свойства
и
признаки
перпендикулярности.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники.
Признаки подобия.
Взаимное расположение прямой и окружности , двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения
длины. Величина угла. Градусная мера угла.
Понятие о площади плоской фигуры и ее свойствах. Измерение
площадей. Единицы измерения площади.
357
Представление об объеме и его свойствах. Измерение объема. Единицы
измерения объемов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление
углов, длин (расстояний), площадей. Тригонометрические функции острого
угла в прямоугольном треугольнике Тригонометрические функции тупого
угла.
Вычисление
элементов
треугольников
с
использованием
тригонометрических соотношений. Формулы площади треугольника,
параллелограмма и его частных видов, формулы длины окружности и
площади круга. Сравнение и вычисление площадей. Теорема Пифагора.
Теорема синусов. Теорема косинусов.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние
между фигурами.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических
фигур.
Инструменты для построений: циркуль, линейка, угольник. Простейшие
построения циркулем и линейкой: построение биссектрисы угла,
перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трем сторонам, двум сторонам и углу
между ними, стороне и двум прилежащим к ней углам.
Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования
Понятие преобразования. Представление о метапредметном понятии
«преобразование». Подобие.
Движения
Осевая и центральная симметрия, поворот и параллельный перенос.
Комбинации движений на плоскости и их свойства.
358
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в
физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками.
Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших
геометрических задач.
История математики
Возникновение математики как науки, этапы ее развития. Основные
разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков.
Рациональные числа. Потребность в иррациональных числах. Школа
Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение
буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о
нахождении формул корней алгебраических уравнений степеней, больших
четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.
Появление
метода
координат,
позволяющего
переводить
геометрические объекты на язык алгебры. Появление графиков функций. Р.
Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи.
Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П.
Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед.
Платон и Аристотель. Построение правильных многоугольников. Триссекция
угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение.
«Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
359
Геометрия
и
искусство.
Геометрические
закономерности
окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и
Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и
Солнца. Измерение расстояния от Земли до Марса.
Роль российских ученых в развитии математики: Л. Эйлер. Н.И.
Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.
Математика в развитии России: Петр I, школа математических и
навигацких наук, развитие российского флота, А.Н. Крылов. Космическая
программа и М.В. Келдыш.
Содержание курса математики в 7-9 классах (углубленный уровень)
Алгебра
Числа
Рациональные числа
Сравнение рациональных чисел. Действия с рациональными числами.
Конечные и бесконечные десятичные дроби. Представление рационального
числа в виде десятичной дроби.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел.
Действия
с
иррациональными
числами.
Свойства
действий
с
иррациональными числами. Сравнение иррациональных чисел. Множество
действительных чисел.
Представления о расширениях числовых множеств.
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка
выражений вместо переменных.
Законы
арифметических
действий.
Преобразования
числовых
выражений, содержащих степени с натуральным и целым показателем.
360
Многочлены
Одночлен, степень одночлена. Действия с одночленами. Многочлен,
степень многочлена. Значения многочлена. Действия с многочленами:
сложение, вычитание, умножение, деление. Преобразование целого
выражения в многочлен. Формулы сокращенного умножения: разность
квадратов, квадрат суммы и разности. Формулы преобразования суммы и
разности кубов, куб суммы и разности. Разложение многочленов на
множители: вынесение общего множителя за скобки, группировка,
использование формул сокращенного умножения. Многочлены с одной
переменной. Стандартный вид многочлена с одной переменной.
Квадратный трехчлен. Корни квадратного трехчлена. Разложение на
множители квадратного трехчлена. Теорема Виета. Теорема, обратная теореме
Виета. Выделение полного квадрата. Разложение на множители способом
выделения полного квадрата.
Понятие тождества
Тождественное преобразование. Представление о тождестве на
множестве.
Дробно-рациональные выражения
Алгебраическая дробь. Преобразования выражений, содержащих
степени с целым показателем. Допустимые значения переменных в дробно-
рациональных выражениях. Сокращение алгебраических дробей. Приведение
алгебраических дробей к общему знаменателю. Действия с алгебраическими
дробями: сложение, умножение, деление.
Преобразование выражений, содержащих знак модуля.
Иррациональные выражения
Арифметический квадратный корень. Допустимые значения переменных
в
выражениях,
содержащих
арифметические
квадратные
корни.
Преобразование выражений, содержащих квадратные корни.
361
Корни n-ых степеней. Допустимые значения переменных в выражениях,
содержащих корни n-ых степеней. Преобразование выражений, содержащих
корни n-ых степеней.
Степень с рациональным показателем. Преобразование выражений,
содержащих степень с рациональным показателем.
Уравнения
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с
переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности
уравнений и уравнениях-следствиях.
Представление о равносильности на множестве. Равносильные
преобразования уравнений.
Методы решения уравнений
Методы равносильных преобразований, метод замены переменной,
графический метод. Использование свойств функций при решении уравнений,
использование теоремы Виета для уравнений степени выше 2.
Линейное уравнение и его корни
Решение линейных уравнений. Количество корней линейного
уравнения. Линейное уравнение с параметром.
Квадратное уравнение и его корни
Дискриминант квадратного уравнения. Формула корней квадратного
уравнения. Количество действительных корней квадратного уравнения.
Решение квадратных уравнений: графический метод решения, использование
формулы для нахождения корней, разложение на множители, подбор корней с
использованием теоремы Виета. Биквадратные уравнения. Уравнения,
сводимые к линейным и квадратным. Квадратное уравнение с параметром.
Решение простейших квадратных уравнений с параметрами. Решение
некоторых типов уравнений 3 и 4 степени.
362
Дробно-рациональные уравнения
Решение дробно-рациональных уравнений.
Простейшие
иррациональные
уравнения
вида:
( )
f x
a
=
;
( )
( )
f x
g x
=
и их решение. Решение иррациональных
уравнений вида
( )
( )
f x
g x
=
.
Системы уравнений
Уравнение с двумя переменными. Решение уравнений в целых числах.
Линейное уравнение с двумя переменными. Графическая интерпретация
линейного уравнения с двумя переменными.
Представление о графической интерпретации произвольного уравнения
с двумя переменными: линии на плоскости.
Понятие системы уравнений. Решение систем уравнений.
Представление о равносильности систем уравнений.
Методы решения систем линейных уравнений с двумя переменными
графический метод, метод сложения, метод подстановки. Количество решений
системы линейных уравнений. Система линейных уравнений с параметром.
Системы нелинейных уравнений. Методы решения систем нелинейных
уравнений. Метод деления, метод замены переменных. Однородные системы.
Неравенства
Числовые неравенства. Свойства числовых неравенств. Проверка
справедливости неравенств при заданных значениях переменных.
Неравенство с переменной. Строгие и нестрогие неравенства.
Доказательство неравенств. Неравенства о средних для двух чисел.
Понятие о решении неравенства. Множество решений неравенства.
Представление о равносильности неравенств.
Линейное неравенство и множества его решений. Решение линейных
неравенств. Линейное неравенство с параметром.
363
Квадратное неравенство и его решения. Решение квадратных
неравенств: использование свойств и графика квадратичной функции, метод
интервалов. Запись решения квадратного неравенства.
Квадратное неравенство с параметром и его решение.
Простейшие иррациональные неравенства вида:
( )
f x
a
>
;
( )
f x
a
<
;
( )
( )
f x
g x
>
.
Обобщенный метод интервалов для решения неравенств.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с
одной
переменной:
линейных,
квадратных,
дробно-рациональных,
иррациональных. Изображение решения системы неравенств на числовой
прямой. Запись решения системы неравенств.
Неравенство с двумя переменными. Представление о решении
линейного неравенства с двумя переменными. Графическая интерпретация
неравенства с двумя переменными. Графический метод решения систем
неравенств с двумя переменными.
Функции
Понятие зависимости
Прямоугольная система координат. Формирование представлений о
метапредметном понятии «координаты». График зависимости.
Функция
Способы задания функций: аналитический, графический, табличный.
График функции. Примеры функций, получаемых в процессе исследования
различных процессов и решения задач. Значение функции в точке. Свойства
функций: область определения, множество значений, нули, промежутки
знакопостоянства, четность/нечетность, возрастание и убывание, промежутки
монотонности, наибольшее и наименьшее значение, периодичность.
Исследование функции по ее графику.
Линейная функция
364
Свойства, график. Угловой коэффициент прямой. Расположение графика
линейной функции в зависимости от ее коэффициентов.
Квадратичная функция
Свойства. Парабола. Построение графика квадратичной функции.
Положение графика квадратичной функции в зависимости от ее
коэффициентов. Использование свойств квадратичной функции для решения
задач.
Обратная пропорциональность
Свойства функции
k
y
x
=
. Гипербола. Представление об асимптотах.
Степенная функция с показателем 3
Свойства. Кубическая парабола.
Функции
y
x
=
,
3
y
x
=
,
y
x
=
.Их свойства и графики. Степенная
функция с показателем степени больше 3.
Преобразование графиков функций: параллельный перенос, симметрия,
растяжение/сжатие, отражение.
Представление о взаимно обратных функциях.
Непрерывность функции и точки разрыва функций. Кусочно заданные
функции.
Последовательности и прогрессии
Числовая
последовательность.
Примеры.
Бесконечные
последовательности.
Арифметическая
прогрессия
и
ее
свойства.
Геометрическая прогрессия. Суммирование первых членов арифметической и
геометрической прогрессий. Сходящаяся геометрическая прогрессия. Сумма
сходящейся геометрической прогрессии. Гармонический ряд. Расходимость
гармонического ряда.
Метод математической индукции, его применение для вывода формул,
доказательства равенств и неравенств, решения задач на делимость.
Решение текстовых задач
Задачи на все арифметические действия
365
Решение текстовых задач арифметическим способом. Использование
таблиц, схем, чертежей, других средств представления данных при решении
задачи.
Решение задач на движение, работу, покупки
Анализ возможных ситуаций взаимного расположения объектов при их
движении, соотношения объемов выполняемых работ при совместной работе.
Решение задач на нахождение части числа и числа по его части
Решение задач на проценты, доли, применение пропорций при
решении задач.
Логические задачи
Решение логических задач. Решение логических задач с помощью
графов, таблиц.
Основные методы решения задач
Арифметический, алгебраический, перебор вариантов. Первичные
представления о других методах решения задач (геометрические и
графические методы).
Статистика и теория вероятностей
Статистика
Табличное и графическое представление данных, столбчатые и круговые
диаграммы, извлечение нужной информации. Диаграммы рассеивания.
Описательные статистические показатели: среднее арифметическое, медиана,
наибольшее и наименьшее значения числового набора. Отклонение.
Случайные выбросы. Меры рассеивания: размах, дисперсия и стандартное
отклонение. Свойства среднего арифметического и дисперсии. Случайная
изменчивость. Изменчивость при измерениях. Решающие правила.
Закономерности в изменчивых величинах.
Достарыңызбен бөлісу: |