ОњТЏстік ќазаќстан мемлекеттік медицина академиясы



бет97/98
Дата25.09.2024
өлшемі3,32 Mb.
#145703
1   ...   90   91   92   93   94   95   96   97   98
Байланысты:
ППЗ методичка физика каз (1)

5.7. Бақылау: ауызша сұрақ жауап.
Жаңа тақырыпты бекіту. 5 мин
1.Өздік индукция?
2.Индуктивтілік?
Сабақты қорытындылау. 5 мин
-Оқушылардың білімін бағалау.
Үйге тапсырма беру. 5 мин
36 сабақ
2 Аралық бақылау
5.1 Тақырыбы: Заттардың корпускулалық – толқындық дуализмі.
Сағат саны: 2. 90 мин
5.2.Сабақтың мақсаты: Гармоникалық тербелістердің жалпы сипаттамасы мен гармоникалық тербелістердің энергиясын зерттеу.
5.3.Оқыту міндеттері:
- Теориялық және тәжірибелік көрсетілімдер мен зертханалық жұмыстарды орындау барысында экспериментті жоспарлау;
- сызбанұсқа бойынша құрылғыны жинау, өлшеуіш құралдарды қолдана алу, бақылау жасай алу және өлшеу мен тәжірибені жүргізе білу;
- өлшеудің қателіктерін есептеу және оны бағалай білу, қысқаша есеп жазу және қортынды жасай білу;
Ұйымдастыру кезеңі: 10 мин
-оқушылардың сабаққа қатысуын тексеру.
-оқушылардың сабаққа дайындығын тексеру.
-сабақтың мақсаты мен міндеті. 5.4.Тақырыптың негізгі сұрақтары: 1.Жарық туралы түсінік. 2.Абсолют қара дене. 3.Импульс дегеніміз не? Жаңа сабақты түсіндіру: 40 мин Жарық деген не? Бұл сұраққа ғалымдар көне аманнан жауап іздеп келді. XIX ғасырға дейін жарық тез қозғалатын бөлшектер — корпускулалар ағыны ретінде қарастырылып келді. Бұл көзқарасты И. Ньютон да ұстанды. Бірақ, XIX ғасырда жарықтың толқындық қасиеттері айқын білінетін оның интерференциясыдифракциясы және т.б. құбылыстар ашылды. Юнг пен Френель жұмыстарының нәтижесі екі бәсекелес корпускулалық және толқындық теорияның біреуі, яғни толқындық теорияның жеңіп шығуына әкелді. Бұдан соң Максвелл еңбектерінің қорытындысы жарықтың электромагниттік толқын екенін түпкілікті дәлелдеп берді.
Бірақ XIX ғасырдың аяғы мен XX ғасырдың басында ашылған құбылыстар (оларды біз осы тарауда қарастырып өттік) жарықтың фотондар ағыны ретінде таралатынын көрсетті. Сонымен, жарық деген не? Толқын ба әлде бөлшек пе деген сұрақ қайта туындады. Физик ғалымдар бірте-бірте сұрақты бұлай қоюдың өзі дұрыс емес екенін түсінді.
Жарықта әрі үздіксіз электромагниттік толкындардың, әрі дискретті фотондардың бөлшектік қасиеттері бар. Абсолют қара дененің сәулеленуін және жарық қысымының флуктуацияларын зерттей отырып, жарық қасиеттерінің екіжақтылығын алғаш түсінген Эйнштейн болды. Ол осы айтылған ауытқуларды есептейтін формуланы қорытып шығарды. Бұл формула екі қосылғыштан тұрады, бірінші қосылғыш — "кванттық мүше" жарықты фотондардың ағыны ретінде сипаттаса, екінші қосылғыш — "толкындық мүше" таралатын электромагниттік толқындағы флуктуацияларды сипаттайды. Жиілік жоғары болса, "кванттық мүшенің", төменгі жиіліктерде "толқындық мүшенің" үлесі басым болады. Белгілі оптикалық құбылыстардың заңдылықтарын зерделей отырып, толқын ұзындығы азайған сайын (немесе, жиілік артқан сайын) жарықтың кванттық қасиеттері айқын біліне бастайтынына (және керісінше) көз жеткізуге болады.
Егер жарықтың таралу процесіне статистикалық тәсіл тұрғысынан қарасақ, оның толқынды қорпускулалық екіжақтылық қасиеттері түсінікті бола бастайды. Кванттық көзқарас бойынша жарық — энергия мен импульс және массаға ие фотондардың ағыны. Жарық қандай да бір оптикалық жүйе арқылы (мысалы, дифракциялық тордан) өткенде, фотондар онымен әсерлесіп, кеңістікте қайта орын алмастырып, орналасады. Соның нәтижесінде, мысалы, дифракциялың көрініс бақыланады. Экранның берілген нүктесінің Е жарықталынуы уақыт бірлігінде осы нүктеге түскен барлық фотондар энергияларының қосындысына, олай болса n0 фотондар санына пропорционал. Сонымен, Е және n0 шамалары экранның берілген нүктесіне фотондардың түсу ықтималдылығына пропорционал. Толқындық көзқарас бойынша J жарықталыну интенсивтікке, ал оның өзі амплитуданың квадратына пропорционал, яғни Е ~ А2. Осы екі көзқарасты салыстыра отырып, мынадай қорытындыға келеміз: кеңістіктің қандай да бір нүктесіндегі жарық толқыны амплитудасының квадраты осы нүктеге фотондардың келіп түсу ықтималдылығын анықтайды.
Сонымен, жарықтың корпускулалық және толқындық қасиеттері бірін-бірі жоққа шығармайды, керісінше олар бір-бірін толықтырады. Сәулеленудің корпускулалық касиеттері оның энергиясы, импульсі және массасы үзікті бөлшектер — фотондарда жинақталуымен байланысты болса, толқындық қасиеттері осы фотондардың кеңістікте орналасуының статистикалық заңдылықтарымен байланысты. Тәжірибелер толқындық қасиет тек фотондардың ағынына ғана емес, жеке фотонға да тән екенін көрсетті. Фотон дифракциялық тордан өткен соң экранның қай нүктесіне келіп түсетінін дәл анықтап айту мүмкін емес, тек әр фотонның экранның қандай да бір нүктесіне түсу ықтималдығын ғана есептеуге болады. Осы тақырыпта айтылғандардан фотондар Ньютонның корпускулаларынан мүлде өзгеше бөлшектер екенін көреміз. Ньютон корпускулалары кәдімгі классикалық бөлшектердің қасиетіне ие болса, фотондар әрі бөлшек, әрі толқындық қасиетке ие.[1]


Достарыңызбен бөлісу:
1   ...   90   91   92   93   94   95   96   97   98




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет