Тақырыбы: Математикалық статистиканың негізгі түсініктері


Тақырыбы: Тарату параметрлерін бағалау



Pdf көрінісі
бет7/11
Дата17.10.2023
өлшемі372,95 Kb.
#117506
1   2   3   4   5   6   7   8   9   10   11
Байланысты:
Лекция тезистері АПмПМСӘ

Тақырыбы: Тарату параметрлерін бағалау
 
Қаралатын проблемалық мәселелер (дәріс жоспары):
1. Қатардың орталық тенденциясын сипаттайтын көрсеткіштер
2. Орталық тенденцияның айналасындағы өзгерістерді сипаттайтын 
көрсеткіштер
3. Қатарлар арасындағы байланыс шаралары
Математикалық статистика әдістерін қолданған кезде статистиканың
өзі 
құбылыстың мәнін ашпайтынын және құбылыстың жеке жақтары арасындағы 
айырмашылықтардың себептерін түсіндіре алмайтындығын есте ұстаған жөн. 
Мысалы, зерттеу нәтижелерін талдау қолданылған жұмыс әдісі бұрын жазылғанға 
қарағанда жоғары нәтиже бергенін көрсетті. Алайда, бұл есептеулер жаңа әдіс 
бұрынғыдан гөрі жақсы деген сұраққа жауап бере алмайды.
Педагогика мен психологиядағы статистикалық әдістер құбылыстарды сандық 
сипаттау үшін ғана қолданылады. Қорытынды мен қорытынды жасау үшін сапалы 
талдау қажет. Осылайша, зерттеулерде зерттелген құбылыстардың ерекшеліктерін 
ескере отырып, математикалық статистика әдістерін мұқият қолдану керек.
Әрбір статистикалық қатар және оның графикалық бейнесі статистикалық 
өңдеуге жататын топтастырылған және көрнекі түрде ұсынылған материал болып 
табылады.
Өңдеудің статистикалық әдістері бізді қызықтыратын процестің дамуын 
болжауға мүмкіндік беретін бірқатар сандық сипаттамаларды алуға мүмкіндік 
береді. Бұл сипаттамалар, атап айтқанда, зерттеу кезінде алынған сандардың 
әртүрлі қатарларын салыстыруға және тиісті тұжырымдар мен ұсыныстар жасауға 
мүмкіндік береді.
Барлық вариациялық қатарлар бір
-
бірінен келесі белгілермен ерекшеленуі 
мүмкін:
1. Ауқым, яғни оның жоғарғы және төменгі шекаралары, әдетте лимиттер деп 
аталады.
2. Көптеген нұсқалар шоғырланған белгінің мәні. Бұл белгінің мәні серияның 
орталық тенденциясын көрсетеді, яғни серияға тән.
3. Серияның орталық трендінің айналасындағы вариациялар.
Осыған сәйкес вариациялық қатардың барлық статистикалық көрсеткіштері екі 
топқа бөлінеді:

орталық тенденцияны немесе қатардың деңгейін сипаттайтын көрсеткіштер;

орталық тенденцияның айналасындағы вариация деңгейін сипаттайтын 
көрсеткіштер.
Математикалық күту
Математикалық күту немесе үлгінің арифметикалық мәні 

сериялардың 
орталық тенденциясын көрсететін негізгі сандық сипаттамалардың бірі. Бізді 
қызықтыратын процестің даму болжамын жасау кезінде бұл сипаттама негізгі 
болып табылады. Сонымен қатар, әртүрлі зерттеулерді салыстыру кезінде олардың 
арасындағы айырмашылықтарды объективті бағалауға мүмкіндік береді. 
"Математикалық күту" көрсеткіші халықтың орташа санын, орташа өмір сүру 
ұзақтығын, отбасының орташа жылдық табысын, шешілген есептердің орташа 
санын, жіберілген қателіктерді, игерілген білім бірліктерін және т.б., яғни сандық 
сипаттағы психологиялық
-
педагогикалық құбылыстардың сипаттамаларын 
анықтау кезінде пайдаланылуы мүмкін.
Бізді қызықтыратын белгінің нүктелік таралуы болсын.
Анықтама 7.1. Іріктеменің математикалық күтуі
оның барлық мүмкін мәндерінің 
тиісті салыстырмалы жиілікке көбейтіндісінің қосындысы:
Яғни математикалық күту 
– 
ол мүмкін мәндердің "орташа өлшенген" мәні.
Мода
және медиана



Келесі орташа мән
ол мода. Ол құбылысты жиі кездесетін белгінің мәні негізінде 
сипаттағысы келетін жағдайларда қолданылады.
Анықтама 7.2. Мода 

бұл белгінің ең көп кездесетін мәні.
Айта кету керек, мода 

бұл белгінің жиілігі емес, белгінің жиі кездесетін мәні.
Анықтама 7.3. 
MeX
медианасы 

бұл белгінің мәні, оған қатысты бас жиынтық 
көлемі жағынан тең екі бөлікке бөлінеді, олардың біреуінде белгінің мәні 
MeX
-
тен 
аспайтын, ал екіншісінде 
MeX
-
тен кем емес мүшелер бар.
№ 

дәріс


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет