UDC 631.31
N.Sh. Suleimenova
1
, D.S. Petkova
2
, D.H. Marinova
2
, I.I. Ivanova
2
1
Kazakh National Agrarian University, Almaty, Kazakhstan
2
Institute of Agriculture and Seed Science “Obraztsovchiflik”, Ruse
INVESTIGATIONS WITH ALFALFA IN IASS ”OBTRAZTSOV CHIFLIK” – ROUSSE
Abstract
Alfalfa is prevalently allogamous species of genus Medicago, family Fabaceae. It is spread
all over the world and grown on over 30 million hectares. Scientific experiments with this crop
has started in the Agricultural Experimental Station “Obraztsovchiflik” in 1905.
During the period 1991-1994 18 accessionswith n = 16 of 10 speciesof Scientific Research
Institution in Kazakhstan (KazNAUKazNII and Agriculture) were tested.
At the Institute a large number of Bulgarian and foreign trifoliolate and multifoliolate
varieties and germplasm were studied. An evaluation of the most important traits were made and
correlations and interrelationsbetween them were determined. Seven varieties were created at the
Institute in the last 20 years. Six of them – Nadezhda 2, Prista 2, Prista 3, Prista 4, Roli and
Prisra 5 are trifoliate. The greatest achievement of the Bulgarian alfalfa breeding was
Mnogolistna 1 variety - the only Bulgarian multifoliolate variety (5-7 leafletsper leaf).
Key words:
аlfalfa, foreign trifoliolate and multifoliolate varieties, germplasm.
Alfalfa is prevalently allogamous species of genus Medicago, family Fabaceae. As a
cultivated crop, Medicagosativa (common or blue alfalfa) autotetraploid with 2n = 4x = 32 is
mainly grown in our country. The most important characteristic of alfalfa as cross-pollinating
plant is its high degree of heterozygosity and any action which reduces it, stronglydecreases the
vitality of the individuals and the population as a whole.
The perennial nature, high yield capability and adaptability of alfalfa allowit to beusedfor
newpurposes, such as biofuel, phyto-recovery of soil and water, andevenincludingin the menuof
the people.
The alfalfa is spread all over the world and grown on over 30 million hectares, and that
circumstance requiresbreeding and developing varieties possessing different characteristics [1].
Evaluation of the European alfalfa germplasm for agronomic and physiological traits was
conducted in Spain [2], the Czech and Slovak Republics [3], Italy [4], Bulgaria [5].
The investigations with alfalfa started in the early eighteenth century. In Bulgaria alfalfa
was imported for cultivation in 1890 in Rousse farm “Obraztsovchiflik”and its
206
widespreadingwas began after the opening of the first Magnetic separator station in Plovdiv in
1926. Scientific experiments with this crop were carried out in the Agricultural Experimental
Station “Obraztsovchiflik” in 1905. In the Experimental field the first alfalfa - Hungarian and
Italian were tested. The results of the comparative studies were published in leaflets and were
used for educational purpose and awareness of the farmers from Rousse region.A lot of seed
analyses were carried out in 1920 – 1930 and the row spaces in alfalfa grown for seed were
studied.A rich initial material oflocal populations was collected in 1956 at the Institute of
Obraztsovchiflik – Rousse, too. In IASS “Obraztsovchiflik” were studied the main issues of
alfalfa technology [6], the role of the natural pollinators of alfalfa - wild bees was investigated
[7], significant conclusions concerning seed production were made and the influence of the
meteorological conditions on the forage yield was evaluated. It was found, that for fifteen years
period dry matter yield in alfalfa under conditions of North-East Bulgaria, without irrigation
varied most strongly during the first and the forth year of cultivation. The Hydro-Thermal
Coefficient from January to December effected positively on yield, comparing with the
precipitation and temperature sums.
In 1990, while visiting our scientists in research institutes of Kazakhstan (KazNAU
KazNII and Agriculture) 18 accessions with n = 16 of 10 species ( M. polymorpha, M. truncatula,
M. turbinate, M. orbicularis, M. minima, M. murex, M. deniticulata, M. polymorpha var.
brevispina, M. cirialis and Medicago sativa subsp. caerulea) of genus Medicago were imported.
During the period 1991-1994 seed was sown in the greenhouse and in the field to determine
some morphological and agronomic traits. In 1992, three wild varieties were planted:
Kapuagayskaya 80 and the other 2 from the Alma-Ata region[8]. The results obtained of their
study indicated that those forms were not suitable for growing under the plane conditions of
Northern Bulgaria.
The stability and variability of agronomic traits dry matter yield,plant height and visual
assessment in trifoliate and multifoliolate populations were studied. An evaluation of the
traitsfall dormancy, winterhardiness, regrowth rate after cutting, green mass yield, and seed yield
were made and correlations and interrelationsbetween them were determined [9].
At the Institute a large number of Bulgarian and foreign multifoliolategermplasm were
studied. It was found that the multifoliolate populations were characterized with good productive
potential and were comparable to the standard trifoliate varietiesconcerningdry matter yield and
seed yield. They did not differ significantly in disease resistance ( Pseudopeziza medicagin,
Pseudopeziza jonesii Nannf, Fusariumoxysporumvar,medicaginis and Phytophtorasp.)from the
standard trifoliate varieties (Marinova, unpublished data).
As a result of long-term breeding work multifoliolate alfalfa MF 23 phenotype was
developed on the basis of self pollination of AD-93 line (with three to seven leaflets per leaf).
MF 23 was characterized with 23-24 leaflets per leaf and internodes shorter than 3 cm, compared
to standard trifoliolate varieties. Increasing the leaves/stems ratio was considered as a method to
improve forage quality in alfalfa (Medicago sativa L.).
Vlahova and colleagues have created low lignin lines as their breeding evaluation was
made in the experimental fields of the Institute. The lines with highest productivity were selected
for inclusion in synthetic populations.
The studies in recent years have showed that main factors for reducing the alfalfa stands
were root rot and root damages caused by the larvae of longhorn alfalfa beetle (Plagionotus
floralis Pall.) [10].
A significant increase of damages caused by different pathogens was observed. According
many authors it was due to a significant increase of genetic homogeneity. The introduction of
higheryielding varieties, distinguished with high agronomic performance, and the distribution of
those varieties to large areas led to dangerous epiphytesdue to the increase of the genetic
homogeneity, and to the highsusceptibilityof the host plant by the pathogen. Fungal diseases
207
were of significant importancefor the alfalfa, they caused damagesboth onabove-ground parts -
leaves and stems, and on the root system. Bacterial and virous diseases also caused considerable
damages.
Моre than 250 varietiesand alfalfa populations were tested in IAAS. It was found that
none of them were resistant to Rhizoctoniacrocorum and Verticiliumalbo-atrum. Using infected
by V. albo-atrum seedsto determine the disease resistance and inheritance of the trait in the
progeny 20 foreign varieties, 20 local varieties and 14 crosses was studied [11]. The authors
made the following conclusions: resistance was expressed in the progenyofsome plants; most
strongly was reduced the natural resistance of our local alfalfa population; the availability of
practically healthy plants was indicated that it waspossible to creat resistant varieties using
breeding methods. Yield and quality of alfalfa production could be improved by creation of
varieties resistant to diseases of economical significance. In that aspect, a base was placed which
had to be used and enriched in further research. The alfalfa varieties, created in IASS
“Obraztsovchiflik” have not beenstudied completely in terms of diseases attackshaving
economical significance in Bulgaria. In recent years dynamics and development of alfalfa rust
caused by Uromyces striatus have been studied. The performed screening on alfalfa varieties,
included in the National List of Varieties during the period 2003-2006 identified them as
sensitive to the disease. The alfalfa rust developesstronger in moist and warm years, usually in
late summer and attackes stronger the older stands.
Studies on the damage caused by the larvae of Plagionotus floralis Pall suggested that in
the roots of sick plants the rate of protein, crude fibers, Ca and total phenols increased, and the
contents of P, Mg and sugars decreased.
Dry matter yield and quality of forage characterizing the agronomic value of varieties
remained the most important characteristics in alfalfa breeding programs. The quality of alfalfa
included chemical (contents of proteins and fibers in the dry matter), morphological (plant
height, number of internodes, foliation) and nutritional value (digestibility, absorption, energy
and protein value) [12].Data reported in Europe in the last few years showed that the increase of
yield of dry vegetative mass has been still very limited, no more than 5% compared to the old
varieties and local ecotypes [13, 14]. The good balance between yield and quality of foragewas
the headline target of the research, as they were inversely correlated [15]. It was reported that the
dry vegetative mass of high quality alfalfa varieties contained over 19% crude protein, below
31% acid detergent fibers and less than 41% neutral detergent fibers [16].
The most widespread in Bulgaria, duringthe 70s and 80s of the last century,variety –
Nadezhda 2 was created in “Obraztsovchiflik”.
Six varieties were created at the Institute in the last 20 years. Five of them – Prista 2,
Prista 3, Prista 4, Roli and Prisra 5 are trifoliate. They were created after polycross method that
ensured wide hereditary basis, good ecological plasticity and persistence of the stand. All five
varieties were high productive, drought-resistant and winterhardiness.Dry matter yield per
hectare under conditions without irrigation for a growing season is about 12-15 t and seed yield -
from 1200 to 1500 kg for four years. Seed yield is high enough to provide a highly effective seed
production. In the first year from 100 to 300 kg/ha seed was obtained, in the second and third
year the yield reached 1000 kg/ha, and in the fourth and fifth years – 400-300 kg/ha.
The greatest achievement of the Bulgarian alfalfa breeding was Mnogolistna 1 variety - the
only Bulgarian multifoliolate variety (5-7 leafletsper a leaf). It significantly exceededby quality
the trifoliate varieties: 1.5% higher crude protein content, better digestibility, lower detergent
fibers content. In years with normal or excessive precipitationit exceedes by dry matter yield the
trifoliate varieties. The specific elements of varietal agrotechnicsof that variety are: slightly
reduced sowing rate compared to that of the trifoliate varieties for forage, better
insemination
of
plants in wide-row stand for seed production, with row spacing 45 cm and 70 cm and greater soil
moisture requirement.
208
The results of the study of our varieties - Prista 2, Prista 3, Prista 4, and Mnogolistna 1 in
Serbia, Montenegro, and the Czech Republic showed that they manifestedgood productivity,
higher quality of the green mass and wide ecological plasticity [17]. Without irrigation, but in
years with normal precipitation distribution, dry matter yield of Mnogolistna 1 per one year was
15-20 t/ha. Seed yield for the four years was averagely 1000-1500 kg/ha.
As a result of the new breeding of IASS “Obraztsovchiflik” and the good varietal policy of
the Institute, the seed maintenance of that cropis at a very high level. Annually high yield of pre-
basic and basic seed is obtained, resulting in a number of existing license agreements between
the Institute and private seed producers, farms and companies for the production of alfalfa seed,
which have shownthat about 50% of the seed production areas in Bulgaria were occupied by our
varieties.Predicting the alfalfa flowering via regulationthe time of mowing was of significant
importance for the increase of seed yield, so that pollination to take place in a warm, dry and
sunny weather. The efficient production of alfalfa seed required optimum plant protection,
adequate varietal structure, and appropriate agrotechnics.
References
1.
Miliж, D.,V. Mihailoviж, Р Karagiж, S. Vasiljeviж, A. Mikiж , S. Katiж. 2011.
Efficacy of Progeny Tests in Alfalfa (Medicago sativa L. ) Breeding for Yield and Quality.
Genetics and Breeding, Field Veg. Crop Res. 48, 327-332.
2.
Fombellida, A. 2001. Selection of identifcation traits in the “Tierra de Campos” alfalfa
ecotypethrough discriminant analysis. In: Quality in lucerne and medics for animal production,
61-65. Eds. I.DELGADO, J. LLOVERAS. Proceedings of the XIV Eucarpia Medicago spp.
Group Meeting. Optionsm
йditerranйennes, serie A, Sйminaires Mйditerranйens, 45. CIHEAM.
Zaragoza and Lleida (Spain), 12-15 September 2001.
3.
Drobna J., M. Zakova, P. Hauptvogel, E. Sedlakova. 1999. Evaluation of alfalfa
geneticresources using cluster analysis based on morphological and agronomic characteristics.
In: Lucerne andmedics for the XXI century, 217-227. Eds. F. VERONESI, D. ROSELLINI.
Proceedings of the XIIIEucarpia Medicago spp. Group Meeting, Perugia (Italy). Sept. 13-16,
1999.
4.
Torricelli, R., L. Russi, D.D. Silveri, M. Falcinelli, F. Veronesi, 2003. Lucerne genetic
resources from Central Italy. In: Biodiversity and genetic resources as the bases for future
breeding, 251-254. Eds. J. NEDELNIK, B. CAGAS. Proceedings of the XXV Eucarpia Fodder
Crops and Amenity Grasses Section and XV Eucarpia Medicago spp. Group Meeting, Brno,
Czech republic, September 1-4 2003. Czech Journal of Genetics and Breeding, 39 (Special
Issue).
5.
Kertikova, D., C. Scotti, T. Kertikov, A. Atanasov. 2003. Evaluation of alfalfa
germplasmresistant to alfalfa mosaic virus (AMV). In: Biodiversity and genetic resources as the
bases for futurebreeding, 269-271. Eds. J. NEDELNIK, B. CAGAS. Proceedings of the XXV
Eucarpia Fodder Cropsand Amenity Grasses Section and XV Eucarpia Medicago spp. Group
Meeting, Brno, Czech republic,September 1-4 2003. Czech Journal of Genetics and Breeding, 39
(Special Issue)
6.
Mirchev, M. 1983. Technology for efficient production of alfalfa seed. Agriculture. 2
7.
Delgado, I. D. Anduaza, F. Munoz. 2003. Forage yield and persistence of lucerne
cultivars in two harvest frequencies. In: Biodiversity and genetic resources as the bases for
future breeding, 278-280. Eds. J. NEDELNIK, B. CAGAS. Proceedings of the XXV Eucarpia
Fodder Crops and Amenity Grasses Section and XV Eucarpia Medicago spp. Group Meeting,
Brno, Czech republic, September
8.
Мейірман Ғ.Т., Масончич-Шотунова Р.С. Люцерна – Алматы, «Асыл кітап»
баспасы,2012.-416 с.
209
9.
MarinovaD., D. Petkova. 2010. Correlation dependences between green matter weight
and yield components in alfalfa germplasm and their crosses, Journal of Mountain Agriculture
on The Balkans, V. 13, 4, pp. 897-904
10.
Ivanova, Il. E. Zhekova, , D. Marinova, D. Petkova, 2013. Study on the response of
alfalfa germplasm for resistance to root rot,Banat's Journal of Biotechnology, IV(7), pp. 90-94
11.
Antonova N., M. Mirchev, N. Nedeltchev 1976. Problems of alfalfa production, 25-30
12.
Kirilov, A. 2001. Lucerne quality and possibilities for its estimation.Proceedings of
the XIV EUCARPIA Medicago spp. Group Meeting,Zaragoza, 45,231–234.
13.
Babinec, J., Z. Kozova, E.Zapletalova. 2003. The characteristics of some lucerne
( Medicago sativaL.) varieties. In: Biodiversity and genetic resources as the bases for future
breeding, 188-193. Eds. J.NEDELNIK, B. CAGAS. Proceedings of the XXV Eucarpia Fodder
Crops and Amenity Grasses Sectionand XV Eucarpia Medicago spp. Group Meeting, Brno,
Czech republic, September 1-4 2003. CzechJournal of Genetics and Breeding, 39 (Special Issue).
14.
Kertikova, D., C. Scotti. 1999. Fall dormancy in lucerne varieties and its relation to performance.
In: Lucerne and medics for the XXI century, 250-253. Eds. F. VERONESI AND D. ROSELLINI. Proceedingsof
the XIII Eucarpia Medicago spp. Group Meeting, Perugia (Italy). Sept. 13-16, 1999.
15.
Testa, G., F. Gresta, S.L. Cosentino. 2011. Dry matter and qualitative characteristics
of alfalfa as affected by harvest times and soil water content, European Journal of Agronomy, V.
34, 3, 144–152.
16.
Kazemi M, Tahmasbi AM, Naserian AA, Valizadeh R, Moheghi MM. 2012. Potential
nutritive value of some forage species used as ruminants feed in Iran. African Journal of
Biotechnology 11: 12110-12117.
17.
Djukic, D., G. Genier, Ch. Acalle and D.Petkova. 2004. Agronomical characteristicsof
native and foreign alfalfa varieties andgermplasms. In: D. Djukic et al. (Editors),Forage crops as
a basis for cattle production improvement (Proceedings of 10thNational Symposium for Forage
crops),Cacak, Serbia and Montenegro, 26-28 May,2004, pp. 79-86
Сулейменова Н.Ш., Петкова Д.С., Maриновa Д.Х., Ивановa И.И.
РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ С ЛЮЦЕРНОЙ В
IASS”ОБРАЗЦОВ ЧИФЛИК” – РУСЕ
Люцерна (лат. Medicago) является преимущественно перекрестноопыляющимся
растением, принадлежащее к семейству Бобовые (Fabaceae). Она распространяется и
выращивается на более 30 млн. га по всему миру. Научные эксперименты с этой культуры
начались в сельскохозяйственной опытной станции “Obraztsovchiflik” в 1905 году За
период 1991-1994 18 единиц хранения с п = 16 из 10 видов из Научно исследовательских
учереждении Казахстана (KazNAU и KazNII Земледелия) были испытаны. В институте
изучалось большое количество болгарских иностранных трехлепестных и
многолисточковых сортов и зародышевой плазмы. Выявлены наиболее важные
особенности (признаки) этой культуры и определены корреляции взаимосвязи между
ними. За последние 20 лет в институте были созданы семь сортов этой культуры:
Надежда 2, Приста 2, Приста 3, Приста 4, Роли и Приста 5 тройчатые. Самым большим
достижением болгарской селекции люцерны был сорт Многолистна - 1 - единственный
болгарский многолисточковый сорт (5-7 лепестков на лист).
210
Сулейменова Н.Ш., Петкова Д.С., Maринова Д.Х., Иванова И.И.
”ОБРАЗЦОВ ЧИФЛИК” – РУСЕ ЖАҒДАЙЫНДА БЕДЕ ДАҚЫЛЫНЫҢ
СОРТТАРЫН ЭКСПЕРИМЕНТТІК ЗЕРТТЕУДІҢ НӘТИЖЕСІ
Беде (лат. Medicago) бұршақ(Fabaceae) тұқымдасына жататын шөптесін өсімдіктер.
Ол әлемде 30 млн.га-дан астам аумақта өсіріледі. Бұл дақылды зерттеуге қатысты ғылыми
тәжірибелер 1905 жылы “Obraztsov chiflik” ауылшаруашылық тәжірибелік станциясында
жүргізіле бастады. 1991-1994 жылдар аралығында бұл дақылдың Қазақстаннан әкелінген
10 түрінен, қайталау саны n = 16 болатын 18 қосылысы зерттелінді. Институтта көп
мөлшерде болгарлық және шетелдік үшжапырақшалы, сонымен бірге көпжапырақшалы
сорттарына және ұрықтық плазмаға зерттеулер жүргізілген. Зерттеу барысында бұл
өсімдіктің басты белгілері бөлініп алынып, олардың арасындағы коррелляциялық
байланысы анықталған. Соңғы 20 жылда институтта бұл дақылдың жеті сорты
шығарылған: Надежда 2, Приста 2, Приста 3, Приста 4, Роли және Приста 5. Болгарлық
селекцияның ең үлкен жетістігі – беденің болгарлық жалғыз көпжапырақшалы (1
жапырақта 5-7 жапырақша) сорты - Многолистна-1 болып табылады.
УДК 633/635:631.52:633.1
Тастанбекова Г.Р., Раисов Б.О., Мурзабаев Б.А.
Юго-Западный научно-исследовательский институт
животноводства и растениеводства (Шымкент)
Южно-Казахстанский государственный университет им. М. Ауэзова (Шымкент)
Южно-Казахстанская областная инспектура по сортоиспытанию
сельскохозяйственных культур (Шымкент)
РЕЗУЛЬТАТЫ ЭКОЛОГИЧЕСКОГО СОРТОИСПЫТАНИЯ КУКУРУЗЫ
НА ПРОДУКТИВНОСТЬ В УСЛОВИЯХ ЮЖНОГО КАЗАХСТАНА
Аннотация
В статье приводятся результаты многолетних исследований по сортоизучению
кукурузы. Установлены наиболее продуктивные гибриды и сорта, приспособленные к
специфическим почвенно-климатическим условиям Южного Казахстана.
Ключевые слова: кукуруза, гибрид, сорт, экологическое сортоиспытание,
продуктивность.
Введение
В основных направлениях экономического и социального развития Республики
Казахстан на период до 2030 года одной из главных задач в сельском хозяйстве является
неуклонное наращивание производства зерна. Основной путь решения этой задачи -
повсеместное повышение урожайности зерновых культур, среди которых важная роль
отводится кукурузе, как одной из наиболее урожайных и конкурентоспособных культур в
условиях рынка.
Кукуруза одна из ведущих зерновых и кормовых культур в мировом земледелии. У
нее огромные потенциальные возможности и при соблюдении технологии возделывания
она может давать урожаи в 2-3 раза выше зернофуражных культур [1].
211
Согласно статистическим данным, по Южно-Казахстанской области посевные
площади кукурузы, возделываемой на зерно и силос, в конце 1980-х годов доходили до
40-
50 тыс.га. В последние годы площади посева составляют более 25 тыс.га.
Почвенно-климатические условия Южно-Казахстанской области благоприятны для
возделывания кукурузы (большое количество тепла, длинный безморозный период, не
суровые зимы). Анализ состояния отрасли показывает, что одна из основных причин
низкой урожайности культур – низкое качество семенного материала и сортовое
несоответствие местным условиям. Значительный подъем урожайности культуры
возможен лишь на основе агроприемов, разработанных соответственно различным
природным и экономическим условиям разнообразных зон. Одним из важнейших
элементов этого комплекса является возделывание наиболее продуктивных и
высококачественных, устойчивых к основным болезням и хорошо приспособленных к
местным условиям сортов и гибридов культур.
Поэтому для обеспечения населения страны зерном кукурузы для поддержания
высоких семенных качеств и продуктивности культур необходимо проводить
систематическое сортообновление и сортосмену. Изучение и внедрение сортов кукурузы
зарубежной селекции имеет актуальность для развития науки в аграрном секторе
Республики Казахстан [2].
В настоящее время крестьяне хозяйства сеют гибриды или сорта производственного
происхождения, поэтому урожайность их очень низка. Одна из причин – отсутствие
адаптированных гибридов к местным почвенно-климатическим условиям южного
Казахстана.
Однако, кукуруза характеризуется исключительным многообразием форм и большой
изменчивостью морфологических признаков и биологических свойств при выращивании
ее в различных географических районах.
Широкое эколого-географическое испытание гибридов показывает их урожаи,
другие же сильно реагируют на изменение условий выращивания. Выводы о возможности
возделывания того или иного гибрида кукурузы должны быть сделаны на основе
многолетних экологических испытаний (в течение 2-3 лет) в конкретных условиях
выращивания. Только в этом случае можно выявить потенциал продуктивности гибрида и
сделать рекомендации о целесообразности обоснованного использования именно этого
гибрида на зерно, зеленую массу, пищевые цели [3].
Достарыңызбен бөлісу: |