0 SO-?
AC=
m- ABC-ның АС-ға жүргізілген медианасы
m=
BO- АВС-ның медианаларының қиылысу нүктесі
BO= =4
SO2=SB2+BO2
SO=
№29 П ирамиданың табаны-параллелограмм, оның қабырғасы 3 см және 7 см, ал диогональдарының бірі 6 см. Пирамиданың биіктігі диогональдарының қиылысу нүктесінен өтеді, ол 4 см-ге тең. Бүйір қырын табыңыз.
AB=3, BC=7, AC=6, SH=4
SA-?
AC2+BD2=2(AB2+BC2)
BD2=2(9+49)-36
BD2=80
BD=4
BH=BD:2=2
SB2=SH2+BH2
SB2=16+20=36
SB=6
SA2=9+16=25
SA=5
№30 М нүктесі тең түйірлі ABCD трапеция жазықтығынан тысқары жатыр және трапеция төбелерінен бірдей 7 см қашықтықта орналасқан. Егер AB= 12 см , DC= 8 см, AD=6см болса, М нүктесінен трапеция жазықтығына дейінгі қашықтықты табыңыз.
RABCD=RABD
AK=(AB-DC):2=(12-8):2=2
DK2=AD2-AK2
DK2=36-4=32
DK=4
DB2=DK2+KB2
KB=AB-AK=12-2=10
DB2=32+100=132
DB=2
PABD=(12+2 +6):2=9+
SABD=
RABD=
MO=
№31 Дұрыс төртбұрышты пирамиданың табанының диогоналі 4 см, бүйір жақтары табан жазықтығымен 600 жасайды. Пирамидаға іштей сызылған сфераның бетінің ауданын табыңыз.
AC=4
0
r cфера-?
AB2+BC2=AC2
2 AB2=96
AB2=48
AB=4
OH=2
0
rcфера=r tg300=2 * =2
S=4 rcфера2=4 *22=16
№32 Үшбұрышты дұрыс пирамиданың биіктігі мен бүйір жағының арасындағы бұрыш 300-қа тең. Пирамидаға іштей сызылған шардың радиусы 1 см-ге тең болса, табан қабырғасының ұзындығын табыңыз.
< OSK=300
rABC=
SK=2OK=2 =
SO=
rcфера=
a=6
AB=3
№33 Пирамиданың табанында катеттері 6 см және 8 см болып келетін тік бұрышты үшбұрыш жатады. Пирамиданың табанындағы барлық екі жақты бұрыштар 600-қа тең. Пирамиданың биіктігін табыңыз.
A C=6, BC=8, AC=10
OK=(6+8-10)/2=2
0
SK=2OK=4
SO2=SK2-OK2
SO2=16-4=12
SO=2
№34 Үшбұрышты пирамиданың екі бүйір жағы өзара перпендикуляр және олардың аудандары P мен Q –ға тең, ал ортақ қырының ұзындығы а-ға тең. Пирамиданың көлемі неге тең?
SASB=P, SBSC=Q, SB=a V-?
AB=x, BC=y
S ASB= AB SB
x=2P:a
SBSC= BC* SB
y=2Q:a
SABC= AB* BC=
V=
№35 МАВС пирамидасының барлық қырлары 6 см-ге тең, ВМ кесіндісінің ортасы К және А нүктелері арқылы және ВС қырына параллель өтетін қиманың периметрін табыңыз.
AK2=AB2-BK2
AK2=36-9=27
AK=3
KN=3
AN=3
P=3+3 +3 =3(2 +1)
№36
Д ұрыс төртбұрышты пирамиданың диогональдық қимасы табанымен тең шамалы. Егер бүйір қыры 5 см-ге тең болса, пирамиданың табанының ауданын табыңыз.
SASC=Sтаб
AS=5 , Sтаб-?
SH=h
AB=x
AH2=AS2-SH2=25-h2
AC=
AC2=2AB2
AB2=2 (25-h2)
SASC= AC *SH Sтаб= AB2
h=2 (25-h2)
h=
h2=4(25-h2)
5h2=100
h2=20
h=2
AB2=2(25-20)=10
Sтаб=10
№37 Т абанының қабырғалары 3 м және 2 м болатын, ал бүйір бетінің ауданы табандарының қосындысымен тең шамалы болатын дұрыс қиық пирамиданың көлемін табыңыз.
AB=AC=BC=3
MN=NK=MK=2
Sб.б= SABC+ SMNK
V-?
RABC=
Sтаб=
SABC=
SMNK=
Sб.б= (PABC+PMNK) m, m-бүйір жағының апофемасы
Sб.б=
m=
RABC-RMNK=
Hпир=
V=
№38
Табандарының ауданы 16 см2 және 4см2, ал биіктігі 3 см-гетең қиық пирамиданың көлемін табыңыз.
SABC=16 см2
SMNK=4см2
H=3 см
V-?
V= 3 (16+4+ )=28 см3
№39 Үшбұрышты қиық пирамиданың биіктігі 10 м-ге тең, ал табандарының қабырғалары 27 м, 29 м, 52 м-ге тең және екінші табанының периметрі 72 м-ге тең.Пирамиданың көлемін табыңыз.
H =10 м, AC=27, BC=29, AB=52
PMNK=72, V-?
PABC=24+29+52=108
SABC=
SMNK=120
V= *10 *(270+120+ )=1900м2
ІІІ бөлім Параллелепипед.
Достарыңызбен бөлісу: