7.1)Свободные колебания мат.точки. Частота и период колебаний. Амплитуда и начальная фаза.
2)Потенциальное силовое поле и силовая функция. Выражение проекций силы потенциального поля с помощью силовой функции.
1 )
8.1)Затухающие колебания мат.точки. Случай апериодического движения.
2)Момент инерции твёрдого тела относительно оси любого направления. Центробежные моменты инерции.
1)
2)
9.1)Вынужденные колебания мат.точки. Резонанс.
2)Количество движения мат.точки и механической системы. Выражение количества движения механической системы через массу системы и скорость центра масс.
1)Движение мат.точки называется вынужденным если на ряду с востанавливающей силой на неё действует возмущающая сила.
С целью упрощения будем считать, что возмущающая сила изменяется по гармоническому закону.
Явление сильного возрастания амплитуды при совпадении частоты возмущающей силы с частотой собственных колебаний называется резонансом.
2) Количеством движения мат точки называется вектор, имеющий направление вектора скорости, и модуль, равный произведению массы точки m на модуль скорости её движения v.
Количеством движения механической системы называется вектор, равный геометрической сумме (главному вектору) количеств движения всех мат точек этой системы.
10.1)Дифф.ур-я поступательного движения судна при сопротивлении, пропорциональном скорости.
2)Момент количества движения мат.точки относительно центра и оси.
1 )При движении тел в жидкости, сила трения пропорциональна первой степени скорости.
2)Моментом количества движения мат.точки относительно центра называется вектор, модуль которого = произведению модуля количества движения на кратчайшее расстояние от центра до линии действия вектора количества движения, I-й плоскости в которой лежат упоминающиеся линии и направленный так, что бы глядя от его конца видеть движение, совершающееся против часовой стрелки.
Моментом количества движения мат.точки относительно оси называется скалярная величена = произведению проекции количества движения мат.точки на плоскость перпендикулярную данной оси и на кратчайшее расстояние от точки пересечения данной оси с этой плоскостью до прямой, на которой лежит прямая вектора количества движения.
11.1)Дифф.ур-я относительного движения мат.точки. Переносная и Кориолисова силы инерции.
2)З-н сохранения кинетического момента механической системы. Примеры.
1 )Введем 2 вектора
ч исленно равные произведениям
и направленные противоположно ускорениям
Эти векторы назовём переносной и кориолисовой силами инерции.
Д ифф.ур-я относительного движения мат.точки.
2)а)Если сумма моментов относительно данного центра всех внешних сил = 0, то кинетический момент механической системы сохраняет модуль и направление в пространстве.
.б)Если сумма моментов всех действующих на систему сил относительно некоторой оси = 0, то кинетический момент механической системы относительно этой оси есть величина постоянная.
Частный случай:
С истема вращается вокруг неподвижной оси. В этом случае:
И если сумма моментов относительно этой оси = 0, то:
Пример:
П латформа Жуковского
Изменяя положение рук можно изменить угловую скорость вращения системы.
Достарыңызбен бөлісу: |