5.1)Решение I-й задачи динамики. Пример.
2)Теорема об изменении количества движения точки и система в дифф.и конечной формах.
1)Решение первой задачи.
П усть задан закон движения материальной точки в виде,
А так же её равнодействующая и масса m.
Из дифференциального уравнения движения материальной точки в
д екартовой системе координат следует, что:
А налогично решается первая задача для свободной точки, когда связи отсутствуют, а по известным уравнениям движения необходимо найти действующие на точку силы. В этом случае:
Пример.
Груз весом Р поднимается вертикально вверх по закону
Определить натяжение тросса.
Дано: Решение.
2 )ТЕОРЕМА: Производная по времени от кинетического момента механической системы относительно неподвижного центра равен главному моменту всех внешних сил, действующих на систему относительно того же центра.
2)З-н сохранения количества движения:
Если геометрическая сумма всех внешних сил, приложенных к механической системе = 0, то её вектор количества движения постоянен. Воспользуемся дифф.формой теоремы об изменении количества движения механической системы.
.б) Если алгебраическая сумма проекций на какую либо ось всех действующих сил системы = 0, то проекция её вектора количества движения на эту ось есть величена постоянная.
6.1)Решение II-й задачи динамики. Постоянные интегрирования и их определения по начальным условиям. Пример.
2)Кинетический момент механической системы относительно центра и оси. Кинетический момент твёрдого тела вращающегося относительно оси.
1 )Для решения этой задачи целесообразно воспользоваться дифф.ур-ми мат.точки в виде:
П оскольку действие силы известны, то => известны и правые части этих ур-й. Интегрирование их дважды по времени приводит их к 3-м ур-м содержащим 6 произвольным постонным:
З наче ния этих постоянных могут быть просто найдены с помощью нач.усл., т.е. если известно:
П одставив найденные значения в постоянные интегрирования в общее решение дифф-х ур-й получили закон движения точки:
Отсюда => , что мат.точка под действием одной и той же силы может совершать целый класс движений определённый начальными условиями.
Н апример: движения свободной мат.точки под силами тяжести – семейств кривых 2-го порядка.
Начальные условия позволяют учесть влияние на движение мат.точки сил дейсвовавших на неё до того момента, который принят за начальный.
2)Закон сохранения кинетического момента механической системы:
1)Если сумма моментов относительно данного центра всех внешних сил = 0, то кинетический момент механической системы сохраняет модуль и направление в пространстве
2)Если сумма моментов всех действующих на систему внешних сил относительно некоторой оси = 0, то кинетический момент механической системы относительно этой оси есть величина постоянная.
Частные случаи:
С истема вращается вокруг неподвижной оси в этом случае кинетический момент механической системы =
,и если сумма моментов относительно этой оси равна нулю, то
Достарыңызбен бөлісу: |