ПРИМЕНЕНИЕ ИНТЕГРАЛОВ ДЛЯ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ
интегральное исчисление
неопределенный
интеграл
определенный
интеграл
(первообразная)
(площадь
криволинейной
фигуры)
И.Ньютон
Г.Лейбниц
Исаак Ньютон (1643-1727)
Разумом он
превосходил род
человеческий.
Лукреций
Лейбниц Готфрид Вильгельм (1646-1716)
« Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.»
Ж) вычислить интеграл, т.е. найти искомую величину.
Пример 1. Нахождение пути по заданной скорости.
Пусть точка движется со скоростью V(t). Нужно найти путь s, пройденный точкой от момента t=a до момента t=b. Обозначим s(t) путь, пройденный точкой за время t от момента a. Тогда s’(t)=V(t), т.е. s(t) – первообразная для функции V(t). Поэтому по формуле Ньютона - Лейбница найдём:
s= V(t)dt.
Например, если точка движется со скоростью V(t)=2t+1(м/с), то путь, пройденный точкой за первые 10 с, по формуле равен
S= ∫10 (2t+1)dt = (t2 + t)|10 = 110(м)
Пример 2. Задача о вычислении работы переменной силы.
Пусть тело, рассматриваемое как материальная точка, движется по оси Ox под действием силы F (x), направленной вдоль оси Ox. Вычислим работу силы при перемещении тела из точки x=a в точку x=b.
Пусть A (x) – работа данной силы при перемещении тела из точки а в точку x. При малом h силу F на отрезке можно считать постоянной и равной F (x). Поэтому A (x + h) – A (x) =F (x)h, т.е. :
A (x + h) – A (x)
h F (x)
Устремляя h к нулю, получаем, что A’ (x) = F (x), т.е. A (x) – первообразная для функции F (x). По формуле Ньютона – Лейбница получаем