Решение текстовых задач разными способами и методами


Определение текстовой задачи. Структура задачи



бет3/11
Дата27.11.2023
өлшемі0,83 Mb.
#129623
түріРешение
1   2   3   4   5   6   7   8   9   10   11
Байланысты:
Решение текстовых задач разными способами и методами

Определение текстовой задачи. Структура задачи
Термин задача встречается нам как в быту так и в профессии. Каждый из нас решает ежедневно те или иные задачи. Авторы дают различные определения задачи вот некоторые из них:
1. Арифметической задачей называют требование найти числовое значение некоторой величины, если даны числовые значения других величин и существует зависимость, которая связывает эти величины, как между собой, так и с искомой (М.В. Богданович )[27].
2. В окружающей нас жизни возникает множество таких ситуаций, которые связаны с числами и требуют выполнения арифметических действий над ними, – это задачи (М.А. Бантова) [27].
3. Задача – это сформулированный словами вопрос, ответ на который может быть получен с помощью арифметических действий (М.И. Моро, А.М. Пышкало ).
4. Текстовая задача есть описание некоторой ситуации (ситуаций) на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между его компонентами или определить вид этого отношения (Л.П. Стойлова , А.М. Пышкало )[25].
5. Любая задача представляет собой требование или вопрос, на который надо найти ответ, опираясь и учитывая те условия, которые указаны в ней (Л.М.Фридман, Е.Н.Турецкий )[29].
6. В начальном курсе математики понятие «задача» обычно используется тогда, когда речь идет об арифметических задачах. Они формулируются в виде текста, в котором находят отражение количественные отношения между реальными объектами (Н.Б.Истомина )
7. Под текстовыми арифметическими задачами подразумевают задачи, имеющие житейское, физическое содержание и решаемые с помощью арифметических действий (В.Л. Дрозд )
Таким образом, четкого определения текстовой арифметической задачи нет, вводится лишь её понятие, причем, по мнению Н.В. Метельского , это понятие является первичным (неопределяемым). Он отмечает, что «задача – понятие неопределяемое и в самом широком смысле слова означает то, что требует исполнения, решения. Иногда под задачей понимают упражнение, которое выполняется, решается посредством умозаключения, вычисления и т.п. Последнее толкование термина «задача» ближе к понятию «задача в обучении», которую можно назвать дидактической задачей. Математическая задача в обучении … является также неопределяемым понятием, подчиненным понятию «дидактическая задача»».
Т.Е. Демидова выделяет следующие виды задач:
а) общегосударственные задачи,
б) задачи определенных коллективов и групп,
в) задачи которые стоят перед отдельными личностями.
В широком смысле, задача – это ситуация требуемая некоторого решения.
А.Н. Леонтьев определяет задачу как цель, заданную в определенных условиях. Л.Л. Гурова рассматривает ее, как объект мыслительной деятельности, содержащий требование некоторого практического преобразования или ответа на теоретический вопрос посредством поиска условий, производящих раскрытие связи (отношения) между известными и неизвестными ее элементами. А вот Л.М. Фридман, связывает понятие «задача» с понятием «проблемная ситуация». Детальный анализ и обзор различных подходов к определению термина «задача» представлен в работе Ю.М. Калягина.
По определению Ю.М. Калягина, задача – есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения.
В своих работах А.А. Темербекова выделяет особый вид задач – математические, она их раскрывает следующим образом. Математическая задача – это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии.
Отдельным блоком можно поставить математические задачи, для решения которых нужны специальные математические знания.
Т.Е. Демидова выделяет: научные (н-р, теорема Ферма, проблема Гольбаха и др.), решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков у разных групп обучаемых и направлены на изменение качеств личности обучаемого [29].
В учебных математических задачах объекты математические (числа, фигуры и т.п.), ученые же задачи характеризует реальные предметы (скорость, масса, длина и т.п.)
Математическая задача – это требование осуществить некоторую математическую деятельность в указанных условиях.
По характеру различают задачи на вычисление, на построение, на доказательство, на исследование, на моделирование. По роли, которую играют учебные задачи, их делят на репродуктивные, задачи с известным алгоритмом и проблемные. Задачи, все объекты которых математические (доказательство теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т. д.), часто называют математическими задачами. Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми. В начальном обучении математике велика роль текстовых задач.
Демидов Т.Е. текстовой задачей называет описание некоторой ситуации на естественном и (или) математическом языке с требованием либо дать количественную характеристику какого-то компонента этой ситуации (определить числовое значение некоторой величины по известным числовым значениям других величин и зависимостях между ними), либо установить наличие или отсутствие некоторого отношения, либо найти последовательность требуемых действий [29].
Придерживаясь современной терминологии, можно сказать. Что текстовая задача представляет собой словесную модель ситуации, явлений, события, процесса. Как в любой модели, в текстовой задаче описывается не всё событие или явление, а лишь его количественные и функциональные характеристики.
Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие должно быть выполнено для получения ответа на требование задачи.
В каждой задаче можно выделить:

  1. числовые значения величин, которые называются данными, или известными (их должно быть не менее двух);

  2. некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой (словесный материал, указывающий на характер связей между данными и искомыми);

  3. требование или вопрос, на который надо найти ответ.

Числовые значения величин и существующие между ними зависимости, т. е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условием задачи. В задаче обычно не одно, а несколько условий, которые называют элементарными.
Требования могут быть сформулированы как в вопросительной, так и в повествовательной форме, их так же может быть несколько. Величину, значения которой требуется найти, называют искомой величиной, а числовые значения искомых величин - искомыми, или неизвестными.
Систему взаимосвязанных условий и требований называют высказывателыюй моделью задачи. Для того чтобы уяснить структуру задачи, надо выявить ее условия и требования, т. е. построить высказывательную модель задачи.
Ответ на требование задачи получается в результате ее решения. Решить задачу в широком смысле этого слова - это значит раскрыть связи между данными, заданными условием задачи, и искомыми величинами, определить последовательность применения общих положений математики (правил, законов, формул и т. д.), выполнить действия над данными задачи, используя общие положения и получить ответ на требование задачи или доказать невозможность его выполнения. Термин «решение задачи» широко применяется в математике. Этим термином обозначают связанные между собой, но все же неодинаковые понятия:

  1. Решением задачи называют результат, т. е. ответ на требование задачи.

  2. Решением задачи называют процесс нахождения этого результата, т. е. вся деятельность человека, решающего задачу, с момента начала чтения задачи до окончания решения.

  3. Решением задачи называют лишь те действия, которые производят над условиями и их следствиями на основе общих положений математики для получения ответа задачи.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет