X и Y – независимы. D(X) = 5, D(Y) = 2. Используя свойства дисперсии, найдите D(2X+3Y).
Вероятность появления события в каждом из независимых испытаний равна 0,9. Составить таблицу распределения числа появления события при 5 испытаниях. Найти математическое ожидание и среднее квадратическое отклонение данной случайной величины.
В урне 3 белых и 2 черных шара. Наудачу достают шары по одному без возвращения, до тех пор, пока не появится белый шар. Дискретная случайная величина Х – число испытаний, проведенных при этом. Составить таблицу распределения Х, найти , и .
В урне 5 белых шаров и 25 черных. Вынули 1 шар. Случайная величина Х – число вынутых белых шаров. Найти таблицу распределения и функцию распределения величины Х. Найти Найти и .
Найти математическое ожидание и дисперсию, среднее квадратическое отклонение и функцию распределения дискретной случайной величины по следующей таблице: