а) сабақтың көрнекілігі: Тақта, бор
ә)
бет 2/3 Дата 06.11.2022 өлшемі 0,91 Mb. #47887 түрі Сабақ
Байланысты:
7 сабақ арксинус, аркосинус, арктангенс, арккотангенс а) сабақтың көрнекілігі: Тақта, бор
ә) үлестірмелі материалдар: Кеспе қағаздар
б) оқытудың техникалық жабдықтары: Кітап
в) оқыту орны: 404, 45, 406, 312 аудитория
4. Сабақтың барысы
Сабақты ұйымдастыру:
Студенттерді түгендеу, оқулықтарын, аудитория тазалығын тексеру.
Студеттердің зейінің сабаққа аудару.
Өткен тақырыптарға шолу:
Тригонометриялық функция
1. Функцияның анықталу облысын табыңыз: ;
А) B)
C) D)
E)
2. Функцияның мәндер облысын табыңыз::
А) В) С) ; D) (-1;1) E) [
3. теңдеуін шешіңдер:
А) В) С)
D) E)
4. кері тригонометриялық функциясын есептеңіз:
А) В) ± С) ; D) E)
5. Суретте қай функцияның графигі кескінделген?
А) B) C) ;
D) E)
6. ...
А)-1 B) C) 1 D) 2 E) 0
7. теңдеуін шешіңіз:
А)
B)
C)
D)
E) 0
Жаңа тақырыпты түсіндіру:
y = arcsin x {\displaystyle y=\arcsin x} өспелі функция болып табылады.
sin ( arcsin x ) = x {\displaystyle \sin(\arcsin x)=x\qquad } , егер − 1 ⩽ x ⩽ 1 , {\displaystyle -1\leqslant x\leqslant 1,}
arcsin ( sin y ) = y {\displaystyle \arcsin(\sin y)=y\qquad } , егер − π 2 ⩽ y ⩽ π 2 , {\displaystyle -{\frac {\pi }{2}}\leqslant y\leqslant {\frac {\pi }{2}},}
D ( arcsin x ) = [ − 1 ; 1 ] {\displaystyle D(\arcsin x)=[-1;1]\qquad } (анықталу облысы),
E ( arcsin x ) = [ − π 2 ; π 2 ] {\displaystyle E(\arcsin x)=\left[-{\frac {\pi }{2}};{\frac {\pi }{2}}\right]\qquad } (мәндер облысы).
Достарыңызбен бөлісу: