Вилана ӛсімдігінің анатомиялық қҧрылысының ӛлшемдері Вилана сортының
тамыр, сабақ және жапырақ мҥшелері дамып жетілгенде анатомиялық қҧрылысын зерттеу
жҥргізілінді. Жапырақ мҥшесінің морфо-анатомиялық қҧрылысын зерттеу кезінде жапырақ
ҧзындығының орташа кӛрсеткіші – 216,00 мкм, алғашқы қабықтың ҧзындығы – 432,21 мкм,
қалыңдығы – 190,83 мкм, орталық жҥйке қалыңдығы – 463,87 мкм, трихомасының ҧзындығы
– 1214,78 мкм, ӛткізгіш шоқ ӛлшемі – 181,11 мкм қҧрады.
Сабақтың морфо-анатомиялық ӛлшемін зерттеу нәтижесінде сабақ диаметрі – 2601,95
мкм, орталық шеңбер ҧзындығы – 489,56 мкм, ӛткізгіш шоқ – 297,32 мкм, ені – 225,27 мкм,
ӛзектік қуысының ҧзындығы – 1374,87 мкм, ені – 544,71 мкм қҧрайтыны анықталды.
Тамырдың морфо-анатомиялық ӛлшемін зерттеу кезінде диаметрі – 1515,50 мкм,
алғашқы қабық қалыңдығы – 420,98 мкм, паренхималық қатар саны – 7 дана, орталық
шеңбер ҧзындығы – 564,74 мкм, трихомасының ҧзындығы – 51,88 мкм, ксилеманың – 319,95
мкм, ал ризодерманың ӛлшем кӛрсеткіші – 21,59 мкм – ге тең болды.
Кесте 2 – Вилана сортының вегетативті мҥшелерінің анатомиялық қҧрылысының ӛлшемі
(орта кӛрсеткіші)
Жапырақтың морфо-анатомиялық ӛлшемі
Алғашқы
кабық,
мкм
Жапырақ
ҧзындығы
, мкм
Жапырағының
қалыңдығы,
мкм
Орталық
жҥйке
қалыңдығы
, мкм
Трихомасыны
ң ҧзындығы,
мкм
Ӛткізгіш шоқ
432,21
216,00
190,83
463,87
1214,78
181,11
Сабақтың морфо-анатомиялық ӛлшемі
Диаметрі
, мкм
Орталық
шеңбер
ҧзындығы
Ӛткізгіш шоқ,
мкм
Ені, мкм
Ӛзектік қуыс, мкм
ҧзындығы
ені
397
, мкм
2601,95
489,56
297,32
225,27
1374,87
544,71
Тамырдың морфо-анатомиялық ӛлшемі
Диаметрі Алғашқы
қабық
Паренхималы
қ қатар саны
Орталық
шеңбер
ҧзындығы
Трихома
Ксилем
а
Ризодерм
а
1515,50
420,98
7
564,74
51,88
319,95
21,59
Вилана сортының тамырының анатомиялық қҧрылысында ксилема сәулелері айқын
тӛрт сәулелі тетраархты екендігі анықталды. Бір жылдық ӛсімдіктердің анатомиялық
қҧрылысына сәйкес алқашқы қабықтан ішке қарай орталық цилиндр бар, оның сыртынан
алғашқы меристема бір қатар клеткалардан тҧратын меристема перицикл қоршаған, ішінде
радиальды ӛткізгіш шоқ орналасқан [сурет 2].
2 сурет – Вилана сортының тамырының анатомиялық қҧрылыс ерекшелігі
Ескертпе: А – тамырдың жалпы анатомиялық қҧрылысы; Б – тамырдың орталық
тетраархты-шеңбері
ҚОРЫТЫНДЫ
Май бҧршақ дақылы жылу сҥйгіш ӛсімдік болғандықтан екінші тәуліктен бастап
тҧқымы ісініп, бӛртіп, ҥшінші тәулікте қос тҧқым жарнағы екіге ажырап, тамыры ӛсіп
шықты, ӛніп шығуы 85% қҧрады. Анатомиялық қҧрылысында ерекшелік байқалды,
тамырдың анатомиялық қҧрылысында Вилана сортында ксилема тетраархты екендігі
айқындалды.
Қолданылған әдебиеттер тізімі
1.
Сейітов Қ., Ӛріспаев І. Суармалы егіншілік ӛнімін арттыру. – Алматы. –Б.58-69
2.
Pantalone V.R., Burton J.W., Carter T.E. Jr. // Soybean fibrous root herita-bility and
genotipic correlations with agronimic and seed quality traits // Crop. Sci. – 1996. Vol.36. №5. –
P.1120-1125.
3.
Атақҧлов Т.А., Арыстанғҧлов С.С., Каракальев А.С., Салаңшынова Б.М., Елшібаев
А.Е. Ӛсімдік шаруашылығының практикумы. – Алматы баспасы, 2007. –Б.125-127.
4.
Жаңабаев Қ.Ш., Саудабаев Т.С., Сейітов И.С. Ӛсімдік шаруашылығының ӛндіру
технологиясы. Алматы: Қайнар, 1994ж. –Б.457-163.
5.
Зеленцов С. В. Современное состояние систематики культурной сои Glycine max (L.)
Merrill. / С. В. Зеленцов, А. В. Кочегура // Масличные Культуры. Науч.-техн. бюллетень
ВНИИМК. – вып. 1 (134). – Краснодар. – 2006. – С.34-48
6.
Можаев Н.И., Әрінов Қ.К., Нҧрғалиев А.Н., Можаев А.Н. Ӛсімдік шаруашылығы. –
Ақмола 1993. –Б.160-161.
7.
Қазақ энциклопедиясы //
http://kk.wikipedia.org/wiki/
398
UDC 581.1
IMPROVING SEED GERMINATION AND PLANT GROWTH BY PRE-SOWING
PRIMING
Babenko O.N.,
Babenko_ON@mail.ru
L.Gumilyov Eurasian National University, Astana
Scientific adviser – Z.A. Alikulov
Introduction. Wheat, barley and agropyron are important agricultural crops in northern part
of Kazakhstan. However often observed in this region adverse climatic and soil (deficiency of
molybdenum) conditions negatively effect onthe sowing qualities of seeds, that leads to thinning of
crops and decrease in productivity.
It is well known that the adaptive capacity of plants to abiotic stresses can be improved at
the early stages of plant development, such as the stage of the imbibition of seed [1,2,3]. Currently
pre-sowing soaking, called priming, is widespread. Priming is pre-sowing seed soaking in solutions
of various compounds for their complete saturation and drying them. It is used in large quantities
for the pre-sowing treatment of small-seeded vegetables. Possibility of priming seed crops, such as
spring barley, spring wheat and agropyron, in the north Kazakhstan has not been studied.
The results ofresearch by the Institute of Soil Science, contributes National Academy of
Sciences of Kazakhstan, showed that soil Kazakhstan contain 3-5 times less molybdenum than
thatnecessary for normal growth and development of plants. It is well known that sodium
molybdate is used as a soil additive in areas where natural molybdenum is deficient and plant
growth suffers. It is usually applied as part of fertilizer or seed treatments.So, priming of seeds in
the molybdate solution is one of the cheapest and cleanest ways to ensure plants by this metal.
Therefore, in the next set of experiments we studied the effects of pre-sowing seed priming
with molybdateor tungstate (chemical analogue of molybdenum) on the seed germination and plant
growth.
Materials and methods.
Seed material. The objects of our experiments were the seeds of spring barley cultivar
Astana-2000, spring wheat cultivar Akmola-2 and agropyron cultivar Batyr, which were breeding in
the A.I. Barayev research and production center of the grain farming and reproducting in 2011. The
seeds weresterilized by using 15% hypochlorite for five minutes andthen washed three times with
distilled water.
Seed treatments.The following seed primingtreatments were applied:
Nutrient priming:The seeds were soaked in solution ofmolybdate (Mo = 25, 50 and 75
mM) and tungstate (W = 25, 50 and 75 mM) for 7 hours at room temperature. The sources for
molybdenum
and
tungsten
were
sodium
molybdate
(Na
2
MoO
4*
2H
2
O)
and
sodium
tungstate(Na
2
WO
4*
2H
2
O), respectively.
Нydro-priming: The seeds were soaked in solution ofdistilled water for 7 hours at room
temperature. The control group of seeds has not been pre-sowing treatment of priming.
Post treatment operations. After seed treatments the seeds were given surface washing
three times by distilled water. Then the seeds were dried in air at room temperature to air-dry statе
for 13 hours. Twenty numbers of seeds were sown for each treatment and control group in Petri
dishes having moist with distilled water filter paper (Whatman 42). There were three replications
for each treatment and control group.
Seeds were germinated in thermostat at 23
0
C for three days.After three days the seeds were
determined pre-germination and germinative energy [4]. Thus, for the germinated seeds were
considered seeds, in which the length of the hypocotyl was equal to the length of the seed, or was
greater than this length. Total germination of seeds was determined on the seventh day.
399
As parameters of seedling growth were used data of the accumulation of raw and dry
biomass, height of seedlings, root length and were calculated the ratio of root/shoot [5].The
obtained results were subjected to statistical analysis.
Results, discussion and conclusion.
Changes in the indicators of germination and germinative energy of seed of the agropyron,
spring barley and wheat under various priming variants are presented in Figures 1, 2, 3,
respectively.
Fig. 1:Effects of seed priming on the germination and germinative energy of agropyron
seeds.Explanation: 1 – control seeds (seeds without priming); 2 – hydro-primed seeds; 3 – 25 mM
Mo-primed seeds; 4 – 50 mM Mo-primed seeds; 5 – 75 mM Mo-primed seeds; 6 – 25 mM W-
primed seeds; 7 – 50 mM W-primed seeds; 8 – 75 mM W-primed seeds.
Fig. 2:Effects of seed priming on the germination and germinative energy of barley
seeds.Explanation: 1 – control seeds (seeds without priming); 2 – hydro-primed seeds; 3 – 25 mM
Mo-primed seeds; 4 – 50 mM Mo-primed seeds; 5 – 75 mM Mo-primed seeds; 6 – 25 mM W-
primed seeds; 7 – 50 mM W-primed seeds; 8 – 75 mM W-primed seeds.
Pre-sowing hydro-priming increased the germination of seeds of wheat and barley by 2%,
but the germination of seeds of agropyron - by 8% (see Fig. 1,2,3).
400
Pre-sowing priming in increasing concentrations of molybdenum (from 25 mM to 75 mM)
also increased the germination of seeds. However, its effect was different for the seeds of various
tested plants. Thus, the effect of molybdenum priming resulted to increase germination of wheat
seeds by 2%, and it is not depended on the concentration of molybdate solution which was used for
priming. The germination of barley seeds increased by 4% at 25 mM Mo-priming, whereas at 50
mM and 75 mM Mo-priming germination of barley seeds rose by 7% as against control seeds. The
germination of agropyron seeds increased by 20, 23 and 30% as against control and 12, 15 and 22%
as against hydro-primed seeds at 25 mM, 50 mM, and 75 mM Mo-priming, respectively. So, Mo-
priming effect on the germination of agropyron seeds was the most significant.
Fig. 3:Effects of seed priming on the germination and germinative energy of wheat
seeds.Explanation: 1 – control seeds (seeds without priming); 2 – hydro-primed seeds; 3 – 25 mM
Mo-primed seeds; 4 – 50 mM Mo-primed seeds; 5 – 75 mM Mo-primed seeds; 6 – 25 mM W-
primed seeds; 7 – 50 mM W-primed seeds; 8 – 75 mM W-primed seeds.
Pre-sowing priming in increasing concentrations of tungsten (from 25 mM to 75 mM)
dramatically reduced the germination of seeds. Thus, at 75 mM W-priming the seed germination of
wheat was in 19.6 times less than in control. While the tungstate priming on germination of barley
and agropyron seeds affected less dramatically (see Fig. 1,2,3), it decreased in 2 and 4 times,
respectively, as against control.
The germinative energy of wheat, barley and agropyron seeds increased by 5, 20 and 14%,
respectively, as against control at pre-sowing hydro-priming (see Fig. 1,2,3).
The germinative energy of tested plants seeds was also higher as against control and hydro-
priming at Mo-priming. At the increase in the concentration of molybdenum (from 25 mM to 75
mM) in the priming solution the germinative energy of barley and agropyron seeds also increased,
while the germinative energy of wheat seeds, vice versa, slightly decreased, although it still was
higher than the control and hydro-priming seeds.
Pre-sowing priming of tungstate (from 25 mM to 75 mM) inhibited germinative energy of
seeds, and most intense in the seeds of wheat and agropyron. Thus, the germinative energy of wheat
and agropyron at 75 mM W-priming was 1 and 3%, respectively. While the tungstate priming on
the germinative energy of barley affected less dramatically, this parameter was 21% (see Fig. 1,2,3).
Thus, priming of plant seeds with water and molybdate has a positive effect, which is
reflected in an increase of the germinative energy of seeds and their germination, respectively. Seed
priming of tungstate inhibits the germinative energy of seed and reduces their germination.
Our results showed that hydro-priming and priming in increasing concentrations of
molybdate stimulated the height of seedlings and roots length, the accumulation of raw biomass, as
a shoot, and roots (see Table 1). Differences in the dynamics of dry biomass accumulation in these
plants were small
as against control
.
401
Table 1. - The parameters of the growth of one -week-old seedling.
plant
wheat
barley
agropyron
cultivar
Akmola-2
Astana-2000
Batyr
variants of treatment/ parameters
co
n
tro
l
h
y
d
ro
-p
rimin
g
Mo-
priming
W-
priming
co
n
tro
l
h
y
d
ro
-p
rimin
g
Mo-
priming
W-
priming
co
n
tr
o
l
h
y
d
ro
-p
rimin
g
Mo-
priming
W-
priming
2
5
m
M
5
0
m
M
7
5
m
M
2
5
m
M
5
0
m
M
7
5
m
M
2
5
m
M
5
0
m
M
7
5
m
M
2
5
m
M
5
0
m
M
7
5
m
M
2
5
m
M
5
0
m
M
7
5
m
M
2
5
m
M
5
0
m
M
7
5
m
M
shoot height, cm
6
,5
7
,5
8
,3
8
,8
5
8
,9
5
3
,3
5
2
,0
7
1
,9
5
7
,9
8
8
,4
9
,0
6
9
,5
4
,6
2
,1
5
1
,8
4
,3
4
,5
4
,5
5
5
,3
2
,5
1
,4
5
0
,9
3
roots length, cm
7
,2
9
8
,8
9
,2
9
,8
2
,1
1,
7
1
8
,3
1
0
,5
9
9
,4
9
,3
3
,5
0
,5
0
,3
4
,2
5
,1
5
,5
5
,7
5
,9
1
,8
1
,5
1
raw biomass of shoot, g
0
,0
4
6
0
,0
6
2
0
,0
5
8
0
,0
6
0
,0
7
0
,0
2
6
0
,0
0
4
0
,0
0
3
0
,0
7
8
0
,0
7
1
0
,0
8
2
0
,0
9
9
0
,0
8
8
0
,0
5
6
0
,0
2
6
0
,0
2
1
0
,0
4
2
0
,0
5
0
,0
5
4
0
,0
5
6
0
,0
5
8
0
,0
2
3
0
,0
1
5
0
,0
1
dry biomass of shoot, g
0
,0
1
4
0
,0
0
9
0
,0
1
0
,0
0
5
0
,0
0
4
0
,0
0
2
0
,0
0
2
0
,0
0
2
0
,0
0
9
0
,0
0
8
0
,0
1
1
0
,0
3
1
0
,0
0
8
0
,0
0
5
0
,0
0
4
0
,0
0
2
0
,0
0
5
0
,0
0
6
0
,0
0
6
0
,0
0
7
0
,0
0
7
0
,0
0
2
0
,0
0
2
0
,0
0
1
raw biomass of roots
0
,0
2
4
0
,0
5
2
0
,0
6
0
,0
6
2
0
,0
7
7
0
,0
0
3
0
,0
0
3
0
,0
0
1
5
0
,0
7
0
,0
8
9
0
,0
9
6
0
,0
9
9
0
,0
9
6
0
,0
0
9
0
,0
0
5
0
,0
03
0
,0
2
2
0
,0
3
4
0
,0
5
3
0
,0
5
4
0
,0
5
6
0
,0
0
5
0
,0
0
3
0
,0
0
1
dry biomass of roots
0
,0
0
7
0
,0
1
1
0
,0
0
9
0
,0
0
5
0
,0
0
5
0
,0
0
1
0
,0
0
1
0
,0
0
0
5
0
,0
1
3
0
,0
1
2
0
,0
0
9
0
,0
0
6
0
,0
0
6
0
,0
0
2
0
,0
0
2
0
,0
0
1
0
,0
0
6
0
,0
0
7
0
,0
0
7
0
,0
0
7
0
,0
0
7
0
,0
0
2
0
,0
0
1
0
,0
0
0
5
ratio of root/shoot
0
,5
2
1
7
4
0
,8
3
8
7
1
1
,0
3
4
4
8
1
,0
3
3
3
3
1
,1
0
,1
1
5
3
8
0
,7
5
0
,5
0
,8
9
7
4
4
1
,2
5
3
5
2
1
,1
7
0
7
3
1
1
,0
9
0
9
1
0
,1
6
0
7
1
0
,1
9
2
3
1
0
,1
4
2
8
6
0
,5
2
3
8
1
0
,6
8
0
,9
8
1
4
8
0
,9
6
4
2
9
0
,9
6
5
5
2
0
,2
1
7
3
9
0
,2
0
,1
Pre-sowing priming in increasing concentrations of tungstate reduced the height of seedlings,
intense inhibited roots length, had a negative effect both on the accumulation of raw biomass, and on
the accumulation of dry biomass of seedlings.
The ratio of root/shoot in water and molybdate primed seedlings was higher as against control
and was either one, or a value close to unity. This suggests that these types of priming stimulate
uniform development of the root system and shoot. Is necessary to note that for the northern regions
of Kazakhstan with due regard to unstable weather conditions of the spring period recommended
cultivars that develop a strong root system in the early stages of plant development [6]. From this
point of view, molybdate priming seeds give additional effect and enhance the sustainability of plants
to adverse factors.
The ratio of root/shoot in tungstate primed seedlings was lower as against control. This
indicates that pre-sowing seed treatment with tungsten largely inhibits root growth as against shoot
growth.
Thus, water and molybdate priming of seeds has a positive effect, which is expressed not only
in the increase of germinative energy and total seed germination, synchronizes seed germination, but
also to stimulate growth and development of plant at early stages of vegetation. Tungstate priming
negatively affects both the germination and the growth rates of seedlings.
Достарыңызбен бөлісу: |