Сборник предназначен студентам, интернам, резидентам, магистрантам


Figure 2 Electronic Health Records (EHR) and Clinical Decision Support  Source



Pdf көрінісі
бет98/333
Дата18.11.2023
өлшемі4,77 Mb.
#124365
түріСборник
1   ...   94   95   96   97   98   99   100   101   ...   333
Байланысты:
sbornikkonferenczii19iyunya2023

Figure 2
Electronic Health Records (EHR) and Clinical Decision Support 
Source
: Røst TB, Clausen C, Nytrø Ø, Koposov R, Leventhal B, Westbye OS, 
Bakken V, Flygel LHK, Koochakpour K and Skokauskas N (2020) Local, Early, 
and Precise: Designing a Clinical Decision Support System for Child and 
Adolescent Mental Health Services. Front. Psychiatry 11:564205. doi: 
10.3389/fpsyt.2020.564205
A look inside ML 
Machine Learning (ML) is a branch of artificial intelligence (AI) that focuses 
on developing algorithms and models that allow computers to learn and make 
predictions or decisions without being explicitly programmed. ML systems are 
designed to analyze data, identify patterns, and make informed decisions or 
predictions based on the patterns discovered. Here are the main principles that 
underpin the workings of ML: 
1.
Data Collection: ML relies on vast amounts of data to train its 
algorithms. This data can come from various sources, such as electronic health 
records, medical imaging, sensor readings, or patient-generated data. The quality 
and diversity of the data play a crucial role in the performance and generalization 
capabilities of ML models. 
2.
Training and Learning: ML models are trained using labeled data
where the desired output or outcome is already known. During the training process, 
the model learns to recognize patterns and relationships within the data to make 
accurate predictions or decisions. This is typically done through the use of statistical 
techniques and optimization algorithms that adjust the model's parameters to 
minimize errors or maximize performance. 
3.
Feature Extraction and Selection: ML algorithms require relevant 
features or attributes from the data to make predictions or decisions. Feature 
extraction involves identifying and transforming the raw data into a more suitable 
representation that captures the underlying patterns. Feature selection involves 
choosing the most informative features that contribute the most to the model's 
predictive power while minimizing redundancy. 


105 
4.
Model Evaluation and Validation: ML models need to be evaluated and 
validated to ensure their accuracy and performance. This is done by using separate 
datasets that were not used during the training phase. Various metrics and 
techniques, such as cross-validation or hold-out validation, are employed to assess 
the model's performance, identify potential biases or overfitting, and fine-tune the 
model if necessary. 
5.
Deployment and Monitoring: Once a ML model has been trained and 
validated, it can be deployed for real-world use. Continuous monitoring is essential 
to ensure that the model's performance remains reliable and that it adapts to any 
changes or shifts in the data distribution. Monitoring also helps detect potential 
biases, ethical concerns, or performance degradation over time. 
6.
Iterative Improvement: ML is an iterative process where models are 
continually refined and improved based on feedback and new data. As more data 
becomes available or new insights are gained, models can be retrained or updated to 
enhance their accuracy and adaptability. 
These principles form the foundation of how ML systems work. However, it's 
important to note that different ML algorithms and techniques exist, such as 
supervised learning, unsupervised learning, and reinforcement learning, each with 
its own specific principles and methodologies. 


Достарыңызбен бөлісу:
1   ...   94   95   96   97   98   99   100   101   ...   333




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет