GHS жүйесінде η өлшенеді г/см⋅с = P (тұрақты);
- см2/с = St (Стокс);
ρ - г/см3.
SI жүйесінде Pa⋅s-пен өлшенеді;
- м2/с;
ρ - кг/м3 есебімен.
Тәжірибеде динамикалық тұтқырлықты анықтау кинематикалық тұтқырлыққа қарағанда оңайырақ болғандықтан, бұл сипаттама әдетте, мысалы, Стокс әдісімен (құлатын шар әдісі) анықталады.
Әдістің мәні келесідей. Материалдық тығыздығы сұйықтықтың тығыздығынан үлкен шарды сұйықтық бар ыдысқа түсірсе, онда ол құлай бастайды. Бұл жағдайда шарға үш күш әсер етеді: ауырлық күші - F, Архимед күші - FA және қозғалысқа қарсылық күші - FC (1-сурет).
Күріш. 1. Сұйықтыққа түскен допқа әсер ететін күштер
Жалпы жағдайда қозғалысқа қарсылық күші немесе ішкі үйкеліс күші сұйықтар үшін Ньютон заңы бойынша анықталады:
, (2)
динамикалық тұтқырлық қайда;
Жылдамдықтың қабаттан қабатқа ауысуын сипаттайтын жылдамдық градиенті (2-сурет);
ΔS - жанасу қабаттарының ауданы;
«–» таңбасы үйкеліс күші мен доптың жылдамдығының қарама-қарсы бағытта бағытталғанын көрсетеді.
Күріш. 2. Ламинарлық сұйықтық ағыны
(2) формуладан динамикалық тұтқырлық бірлікке тең жылдамдық градиентінде жанасатын қабаттардың бірлік бетіне әсер ететін ішкі үйкеліс күшіне сандық түрде тең екендігі шығады. (2) формулада ΔS = 1 м2, dυ/dz=-1 s-1 деп есептесек, мынаны аламыз.
Ньютон заңының салдары (2) сұйықта қозғалатын сфералық денелер үшін Стокс формуласы:
, (3)
доптың жылдамдығы қайда;
Шар радиусы.
Ол дененің жылдамдығының жоғарылауымен және күштердің өсуімен және тұрақты болғандықтан, қозғалыс басталғаннан кейін біраз уақыттан кейін қарама-қарсы бағытталған күштер бір-бірін өтейді, яғни.
Осы кезден бастап доптың қозғалысы біркелкі болады.
Мынадай жағдай болса
, және (5)
, (6)
Мұндағы және сәйкесінше шар мен сұйықтықтың материалының тығыздығы (4) қатынасын былай жазуға болады:
(7)
(7) өрнектен динамикалық тұтқырлықты табыңыз.
- есептеу формуласы (8)
CGS жүйесінде = 981 см/с2.
(8) формулада қатынас шар материалының берілген тығыздығы мен сұйық тығыздығы үшін тұрақты шама болып табылады, сондықтан өлшеу нәтижелерін өңдеу кезінде бұл тұрақтыны бір рет есептеуге болады, содан кейін оны r2 көбейтеді және шарға бөлінеді құлау жылдамдығы υ.
(3) ламинарлы (айналмалы) сұйықтық ағыны үшін жарамды екенін есте ұстаған жөн. Мұндай қозғалыс шардың материалының тығыздығы сұйықтықтың тығыздығынан сәл асып кеткен жағдайда мүмкін болатын кішкентай шардың құлау жылдамдығы жағдайында жүзеге асырылады.
Құрылғының сипаттамасы
Құрылғы сыналатын сұйықтық орналасқан шыны цилиндр болып табылады. Цилиндрде бір-бірінен біршама қашықтықта орналасқан екі көлденең сақиналы а және b белгілері бар (1-сурет). Жоғарғы белгі цилиндрдегі сұйықтық деңгейінен 5 - 8 см төмен орналасады, осылайша шар жоғарғы белгіден өткен кезде шарға әсер ететін күштердің геометриялық қосындысы нөлге тең болады.
1. Шардың диаметрін миллиметрмен микрометрмен өлшеп, миллиметрді сантиметрге айналдырып, шардың радиусын табыңдар. Шар баллонның осіне мүмкіндігінше жақын сыналатын сұйықтыққа түсіріледі.
2. Доп жоғарғы белгіден өткен сәтте секундомерді іске қосыңыз. Доп төменгі белгіден өткенде секундомер өшеді.
3. Өлшеулерді кемінде 5 рет қайталаңыз. Нәтижелер 1-кестеге енгізілген.
1-кесте
Сұйықтықтың тұтқырлық коэффициентін табуға қажетті нәтижелер
1. Әр тәжірибеге сәйкес доптың жылдамдығын есептеңіз
формула , мұндағы l - жоғарғы және төменгі белгілер арасындағы қашықтық.
2. (8) формула бойынша мәнді есептеңіз.
3. Тұтқырлық коэффициентінің орташа арифметикалық мәндерін және өлшеудің абсолютті қателігін есептеп, 1-кестеге енгізіңіз.
4. Салыстырмалы өлшеу қателігін мына формула бойынша анықтаңыз:
.
5. Өлшеу нәтижелері келесідей жазылады:
, г/см⋅с.
6. Формула бойынша кинематикалық тұтқырлықты есептеңіз:
.
Жұмыс есебін дайындауға арналған сұрақтар
№1 нұсқа
Идеал сұйықтық дегеніміз не? Ламинарлық ағын деп нені атайды? Жылдамдық градиенті дегеніміз не? Стокс заңын тұжырымдаңыз. Неліктен өзеннің ортасында ағыс жағалауға қарағанда жылдамырақ? Сұйықтыққа түскен дененің қозғалысы қай кезде біркелкі болады? Бүкіләлемдік тартылыс заңын тұжырымдаңыз. Сұйықтықтың тұтқырлығын анықтау үшін неліктен шар тәрізді дене қолданылады? Тұтқырлық коэффициентінің физикалық мағынасы қандай?
10. Тұтқырлық коэффициентінің өлшем бірлігі.
№2 нұсқа
Сұйықтықтың тұтқырлығы қандай? Тұтқырлық коэффициенті неге тәуелді? Архимед заңын тұжырымдаңыз. Қазіргі уақытта сізге әсер етуші күш бар ма? Сұйықтықта құлаған шарға әсер ететін қалқымалы күш қандай? (Формула). Ішкі үйкеліс күшінің векторы қайда бағытталған және ол не үшін қолданылады? Жылдамдығы 2 және 3 см/сек, арақашықтығы 0,06 м болатын сұйықтың екі қабаты бір-біріне қатысты қозғалады. Жылдамдық градиентін анықтаңыз. Сұйықтықтың тұтқырлығын қалай азайтуға болады? Ішкі үйкеліс коэффициенті цилиндр биіктігіне тәуелді ме?
10. Сұйықтық қозғалысы қай кезде турбулентті болады?
№3 нұсқа
Ішкі үйкеліс үшін Ньютон заңын тұжырымдаңыз. Ені 50 м өзеннің ағынының жылдамдығы орталықта 90 см/сек, ал жағаға жақын жерде 10 см/сек. Ағын жылдамдығының градиентін анықтаңыз. Сұйықтықтың тұтқырлығын анықтау нәтижесін кестемен салыстырыңыз. Мәліметтердің айырмашылығын түсіндіріңіз. Тұтқырлық коэффициентін SI жүйесіне түрлендіру. Бұл жұмыста өлшеу қателігі немен анықталады? Неліктен газдардағы үйкеліс күші сұйықтарға қарағанда аз? Сұйықтықтың тұтқырлығы цилиндрдің диаметріне қалай тәуелді? Сұйықтыққа түсетін шарға қандай күштер әсер етеді? Сұйықтықта доп қалай қозғалады: бірқалыпты, біркелкі баяулады, біркелкі үдетеді?
2. Грабовский физикасы. 6-шығарылым.- Петербург: «Лан» баспасы, 2002, 186-191 б.
3. Кузнецов физикасы. ПМУ баспа бөлімі, 2003. 314 б.