Темы курсовых работ по «Технология программирования (Python)»


Тема 3: Составление и оценка турнира



бет9/51
Дата26.03.2023
өлшемі0,69 Mb.
#76182
1   ...   5   6   7   8   9   10   11   12   ...   51
Тема 3: Составление и оценка турнира
Едва ли не каждый из нас в свое время был болельщиком местной, чуть ли не самой сильной команды. Состоявшийся в конце сезона турнир должен был выявить чемпиона города, округа, штата, страны, мира или Вселенной. Но какое невезение — местные герои проиграли будущему победителю уже в первом круге турнира с немедленным выбыванием. Игра оказалась малоинтересной — никто даже не успел размяться. И ведь как обидно: самые настоящие слабаки в итоге занимают место, которое по праву должно принадлежать нашим парням, а болельщиков вместо волнующей борьбы в финале ждет убогое зрелище.
А виноват во всем турнир с немедленным выбыванием. Пусть имеется 2n команд, n > 0. Тогда в первом круге команда 1 играет с командой 2, команда 3 с командой 4, …, команда 2n − 1 с командой 2n. Проигравшие вылетают, а победители выходят в следующий круг.



Рисунок 3.1. Простой турнир с немедленным выбыванием. Окончательное упорядочение, как это определено в тексте, имеет вид 1, 3, 5, 2, 8, 6, 4, 7.

На рис. 3.1 изображен турнир восьми команд. Если предположить, что более сильная команда всегда выигрывает (т. е. что не бывает срывов), лучшая команда, очевидно, завоюет первое место. Однако второй участник финальной игры может занимать в общей табели о рангах лишь место 2n−1 + 1 при условии, что все более сильные команды оказались в одной группе с победителем. Победитель по мере своего продвижения выведет из розыгрыша хорошие команды, и слабой команде достанутся совсем никудышные соперники. Избежать подобной ситуации можно несколькими способами. Во-первых, команды (в дальнейшем будем называть их соперниками) можно рассеять, чтобы сильные соперники (оценка дается по итогам предыдущих выступлений) разместились по всей турнирной сетке. Например, самый сильный соперник попадает в позицию 1, второй по силе — в 2n−1 + 1, третий — в 2n−1 + 2n−2 + 1, четвертый — в 2n−2 + 1 и т. д. Если предварительная оценка была достаточно точной, сильные соперники не выбьют друг друга в первых кругах. Во-вторых, можно устроить турнир с отложенным выбыванием, когда выбывают после двух поражений. Но на самом деле идеальным решением (хорошо бы еще и практичным!) был бы круговой турнир, в котором все соперники играют друг с другом ровно один раз. В предположении отсутствия срывов сильнейший соперник выиграет 2n − 1 встреч и проиграет 0, второй по силе соответственно 2n — 2 и 1 (уступит лишь сильнейшему), …, а самый слабый — 0 и 2n − 1 (проиграет всем). Трудность в том, что в круговом турнире нужно провести 2n−1(2n − 1) встреч, в то время как в турнире с немедленным выбыванием лишь 2n − 1.




Таблица 3.1. Пример турнира по швейцарской системе

Круг 1
Пары

Победители

Круг 2
Пары

Победители

Круг 3
Пары

Победители

Итоговые результаты

1

1

1

1

1

1

1 (3-0)

8




2




3




3 (2-1)

2

2

3

3

5

2

2 (2-1)

7




5




2




4 (2-1)

3

3

8

8 (Срыв)

4

4

5 (1-2)

6




7




8




6 (1-2)

4

5 (Срыв)

6

4

6

6

8 (1-2)

5




4




7




7 (0-3)

Этот турнир недостаточно велик, чтобы показать достоинства швейцарской системы.


Оказавшись между двумя крайностями, выберем компромиссное решение — швейцарскую систему. В первом круге соперник, «посеянный» первым, встречается с последним, второй — с предпоследним и т. д. После каждого круга соперники упорядочиваются в соответствии с набранными очками. Внутри каждой группы (с равным количеством очков) соперники упорядочиваются по среднему числу очков у побежденных ими противников (тем самым ничья не учитывается). В следующем круге соперник, стоящий в описанной классификации на первом месте, встречается с соперником, занимающим наиболее высокое место из тех, с кем он еще не играл. Остальные пары определяются аналогичным образом: соперники должны иметь почти равное количество очков, причем повторные встречи не допускаются. В табл. 3.1 показан возможный трехкруговой турнир по швейцарской системе с восемью участниками. Крупный шахматный деятель Харкнесс утверждает, что турнир по швейцарской системе в  кругов, где N — число игроков, правильно расставит k + 1 первых игроков (и, из соображений симметрии, k + 1 последних игроков). Швейцарская система справедливее немедленного выбывания и гораздо быстрее круговой. Она позволяет всем соперникам играть в каждом круге. Вопрос состоит в том, как ведут себя подобные турниры в условиях реальных соревнований. Предположим, имеется 2n соперников. Соперник 1 — сильнейший, соперник 2 — второй по силе, …, соперник 2n — слабейший. Для начала проведем круговой турнир, записывая результаты каждого матча. Если встречаются соперники i и j, i < j, положим вероятность победы игрока i равной 1/2 + (j − i)/2n+1.


Тем самым более сильный соперник побеждает с вероятностью, превышающей половину. Упорядочим соперников в соответствии с набранным в круговом турнире количеством очков. Внутри каждой группы команд с равным количеством очков упорядочим их по среднему числу очков, набранных побежденными ими соперниками. Если и здесь наблюдаются совпадения, соперники упорядочиваются по исходным номерам. В результате получается круговая классификация, которую мы будем считать самой «справедливой»; она используется для оценки других способов организации турниров.
Следующий шаг состоит в том, чтобы с одной и той же базой данных провести турниры по швейцарской системе и с немедленным выбыванием. Для разбиения соперников на пары в каждом из этих турниров берутся результаты кругового турнира. Заметьте, что в обоих турнирах два соперника могут встретиться лишь однажды. Швейцарская классификация — это упорядочение после заключительного круга (всего n кругов), причем все оставшиеся неясности разрешаются в соответствии с начальным упорядочением. Затем начните турнир с немедленным выбыванием, составив пары для первого круга случайным образом. В классификации по выбыванию победитель финальной встречи идет первым, побежденный — вторым, и, вообще, проигравшие в i-м круге располагаются перед ранее выбывшими и после всех победивших в i-м и следующих кругах. Внутри группы побежденных в i-м круге соперники располагается в соответствии с итоговыми местами победивших их команд.
Чтобы сравнить эти классификации, используем новую и старую статистики, Старая статистика — это корреляция мест определяемая как
R = 1 − 6  (хi − yi)2/(N3 − N),
где xi — место соперника i в одной классификации, уi — место в другой классификации, N — общее число соперников (в данном случае 2n). Другая статистика подсчитывает совпадения и определяется как М = maxi (∀j) (j ≤ i ⊃ хj = уj).
Тем самым М равно максимальному числу мест (считая от сильнейших к слабейшим), в которых обе классификации в точности совпадают. Статистика R характеризует близость двух классификаций в целом, а M — совпадение верхних частей классификаций.


Тема. Напишите программу, читающую исходное значение n, проводящую каждый из трех турниров для 2n соперников и вычисляющую статистики R и M для каждой из трех пар классификаций. Проведите эксперимент большое число раз с постоянным значением n и подсчитайте средние значения M и R. Сравните, какая из двух систем — швейцарская или с немедленным выбыванием — лучше повторяет результаты кругового турнира.




Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   ...   51




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет