Текст № 8. Математики исламского средневековья
В IX веке жил Ал-Хорезми – сын зороастрийского жреца, прозванный за это ал-Маджуси (маг), заведовал библиотекой «Дома мудрости», изучал индийские и греческие знания. Ал-Хорезми написал книгу «Об индийском счёте», способствовавшую популяризации позиционной системы во всём Халифате, вплоть до Испании. В XII веке эта книга переводится на латинский, от имени её автора происходит наше слово «алгоритм» (впервые в близком смысле использовано Лейбницем). Другое сочинение ал-Хорезми, «Краткая книга об исчислении аль-джабра и аль-мукабалы», оказало большое влияние на европейскую науку и породило ещё один современный термин «алгебра». В книге разбираются линейные и квадратные уравнения. Отрицательные корни игнорируются. Алгебры в нашем смысле тоже нет, всё разбирается на конкретных примерах, сформулированных словесно. Новые математические результаты в книгах ал-Хорезми фактически отсутствуют.
В средневековой исламской математике было сделано довольно много попыток доказать Пятый постулат Евклида. Чаще всего исследовалась фигура, позднее названная четырёхугольником Ламберта. Ал-Джаухари, Сабит ибн Курра, Омар Хайям и другие математики дали несколько ошибочных доказательств, явно или неявно используя один из многочисленных эквивалентов V постулата.
Одним из величайших учёных-энциклопедистов исламского мира был Ал-Бируни. Он родился в Кяте, столице Хорезма. В 1017 году афганский султан Махмуд захватил Хорезм и переселил Ал-Бируни в свою столицу, Газни. Несколько лет Ал-Бируни провёл в Индии. Главный труд Ал-Бируни — «Канон Мас‘уда», включающий в себя множество научных достижений разных народов, в том числе целый курс тригонометрии (книга III). В дополнение к таблицам синусов Птолемея (приведенных в уточнённом виде, с шагом 15'), Ал-Бируни даёт таблицы тангенса и котангенса (с шагом 1°), секанса и пр. Здесь же даются правила линейного и даже квадратичного интерполирования. Книга Ал-Бируни содержит приближённое вычисление стороны правильного вписанного девятиугольника, хорды дуги в 1°, числа π и др.
Прославленный поэт и математик Омар Хайям (XI—XII вв.) внёс вклад в математику своим сочинением «О доказательствах задач алгебры и аль-мукабалы», где изложил оригинальные методы решения кубических уравнений. До Хайяма был уже известен геометрический метод, восходящий к Менехму и развитый Архимедом: неизвестное строилось как точка пересечения двух подходящих конических сечений. Хайям привёл обоснование этого метода, классификацию типов уравнений, алгоритм выбора типа конического сечения, оценку числа положительных корней и их величины. К сожалению, Хайям не заметил возможности для кубического уравнения иметь три вещественных корня. До формул Кардано Хайяму дойти не удалось, но он высказал надежду, что явное решение будет найдено в будущем. В «Комментариях к трудностям во введениях книги Евклида» (ок. 1077) Хайям рассматривает иррациональные числа как вполне законные. В этой же книге Хайям пытается решить проблему пятого постулата, заменив его на более очевидный.
Насир ад-Дин ат-Туси, выдающийся персидский математик и астроном, наибольших успехов достиг в области сферической тригонометрии. В его «Трактате о полном четырехстороннике» (1260) тригонометрия впервые была представлена как самостоятельная наука. Трактат содержит довольно полное и целостное построение всей тригонометрической системы, а также способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси. Сочинение ат-Туси стало широко известно в Европе и существенно повлияло на развитие тригонометрии. Ему принадлежит также первое известное нам описание извлечения корня любой степени; оно опирается на правило разложения бинома.
Джемшид Ибн Масуд ал-Каши, сотрудник школы Улугбека, написал сочинение «Ключ арифметики» (1427). Здесь вводится система десятичной арифметики, включающая учение о десятичных дробях, которыми ал-Каши постоянно пользовался. Он распространил геометрические методы Хайяма на решение уравнений 4-й степени. «Трактат об окружности» (1424) ал-Каши является блестящим образцом выполнения приближенных вычислений. Используя правильные вписанный и описанный многоугольники с числом сторон , аль-Каши для числа π получил значение 3,14159265358979325 (ошибочна только последняя, 17-я цифра мантиссы). В другой своей работе он сосчитал, что sin 1° = 0,017452406437283571 (все знаки верны — это примерно в два раза точнее, чем у ал-Бируни). Итерационные методы ал-Каши позволяли быстро численно решить многие кубические уравнения. Составленные ал-Каши самаркандские астрономические таблицы давали значения синусов от 0 до 45° через 1' с точностью до девяти десятичных знаков. В Европе такая точность была получена только полтора столетия спустя.
Достарыңызбен бөлісу: |