Уравнения вида f(x) = а, где а – данное число, а f(x) – одна из тригонометрических функций, называются простейшими тригонометрическими уравнениями.
Решение простейших тригонометрических уравнений.
05/15/2023
2) уметь определять значения синуса, косинуса, тангенса и котангенса для точек числовой окружности; 4) знать понятие арксинуса, арккосинуса, арктангенса, арккотангенса и уметь отмечать их на числовой окружности. 1) уметь отмечать точки на числовой окружности; 3) знать свойства основных тригонометрических функций; Чтобы успешно решать простейшие тригонометрические уравнения нужно
1. Найти координаты точки М, лежащей на единичной окружности и соответствующей числу
2. Дана точка М с абсциссой ½. Найдите ординату этой точки; укажите три угла поворота, в результате которых начальная точка (1;0) переходит в точку М
М
3. Дана точка М с абсциссой -½. Найдите ординату этой точки; укажите три угла поворота, в результате которых начальная точка (1;0) переходит в точку М