1-билет Математиканы оқыту әдістемесі курсының мақсаты, міндеттері, пəні жəне оның басқа оқу пəндерімен байланысы


Айналу денелері. Цилиндр, конус жəне шар



бет12/12
Дата22.05.2023
өлшемі88,62 Kb.
#95801
1   ...   4   5   6   7   8   9   10   11   12
Байланысты:
Ответы по специальности

Айналу денелері. Цилиндр, конус жəне шар.

«Цилиндр» — «кюлиндрос», грек тілінен аударғанда «оқтау», «валик» деген мағынаны білдіреді.Көптеген ғұламалар бұл денені зерттеумен айналысқан. Евклид өзінің «Бастамаларында» цилиндр көлемін табатын теореманы, Архимед өзінің «шар және цилиндр» жұмысында цилиндрбүйір бетінің ауданының формуласын, Герон өзінің «Метрикасында» цилиндр көлемін табуға бірнеше мысалдар келтірген. Бізді қоршаған ортада, тұрмыста цилиндр пішіндес заттар, обьектілер жиі кездеседі: металдан жасалған бөшкелер, консерві банкалары, хоккейдің шайбасы және т.б. Ал қазіргі кезде цилиндр өмірде көптеп кездеседі.
ААО1В тіктөртбұрышының ОО1 осіне параллель АВ қабырғасы цилиндрдің бүйір беті деп аталатын қисық бетті жасайды және ол цилиндрдің жасаушысы деп аталады. АО және О1В кесінділерінің айналуынан цилидірдің табандары деп аталатын өзара тең екі дөңгелек аламыз. Сонымен цилиндрдің беті цилиндрдің табаңдары деп аталатын екі дөңгелектен және цилиндрдің бүйір бетінен тұрады.
Егер цилиндрдің жасаушысы оның табанына перпендикуляр, яғни цилиндрдің биіктігіне тең болса, онда цилиндр тік дөңгелек цилиндр деп аталады. Дөңгелектер цилиндрдің табандары деп аталады, ал олардың радиусы цилиндрдің радиусы деп аталады. Дөңгелектердің сәйкес нүктелерін қосатын кесінділерді цилиндрдің жасаушылары деп атайды.
Цилиндрдің биіктігі деп табан жазықтықтарының ара қашықтығын атайды.
Цилиндрдің осі деп табандарының центрлерінен өтетін түзуді атайды. Егер цилиндрдің бетін табан шеңберлері бойымен және қайсыбір жасаушысының бойымен қиып алып жазып жіберсек, цилиндрдің жазбасын аламыз. Цилиндрдің жазықтықпен қимасы деп жалғыз нүктеден, цилиндрдің жасаушысынан немесе табанынан өзгеше фигураны, яғни цилиндр мен жазықтықтың ортақ бөлігін атайды. 

Тікбұрышты үшбұрышты катетінен айналдырғанда шығатын фигура конус деп аталады. Грек. Ronos- «қарағай бүршігі»


Конустың төбесінен оның табан жазықтығына жүргізілген перпендикуляр конустың биіктігі болады. Табан шеңберінің кез келген нүктесін конустың төбесімен қосатын кесінділердің проекциялары тең, сондықтан олар – тең кесінділер. Бұл кесінділер конустың жасаушылары деп аталады. Конустың бүйір беті де конустық бет деп аталады. Табаны дөңгелек болып келетін және оның биіктігінің табаны дөңгелектің центріне дәл түсетін конусты тік дөңгелек конус деп атаймыз.
Тік емес конустар мектеп курсында қарастырылмайды. Бұл конус айналу денесі болмайды.
Конус табанының радиусы R жасаушысының ұзындығы l ал биіктігі H болсын. Пифагор теоремасына сәйкес бұл шамалар l 2= R2 +H2
Конустың бүйір бетінің ауданы оның табан шеңберінің ұзындығы мен жасаушының көбейтіндісінің жартысына тең, яғни S = πRl R- конус табанының радиусы, l-конустың жасаушысы.
S = πRl+πR2 = πR(l+R), R- табанының радиусы, l-конустың жасаушысы.
Бізге призманың көлемі табанының ауданынын оның биіктігіне көбейткенге тең екені белгілі. Призма мен цилиндрдің ұқсастығынан цилиндрдің көлемі де табанының ауданы мен оның биіктігінің көбейтіндісіне тең деп алуымызға болады. Vц = SH Vц = πR2H
Конустың көлемін есептегенде, оның пирамидамен ұқсастығын ескеріп, конустың көлемі табанының ауданы мен биіктігінің көбейтіндісінің үштен біріне тең, V к = SH Vк = πR2H
Конустың қайсыбір екі жасаушысын қамтитын екі түзу арқылы бір ғана жазықтығын жүргізуге болады. Бұл жазықтық конустың табанын хорда бойымен, ал бүйір бетін екі жасаушы боймен қиып өтеді. Аталған жазықтық пен конустың ортақ бөлігі теңбүйірлі үшбұрыш болып табылады. Егер α жазықтығы конустың осі арқылы өтсе, онда қимада пайда болған үшбұрыш конустың осьтік қимасы деп аталады. Егер конустың бүйір бетін табанымен қиылыспайтын және конустың осіне перпендикуляр емес жазықтықпен қиып өтсек, онда қимада элиппс аламыз.
Конустың табаны мен табанына параллель қиманың арасындағы бөлігі қиық конус деп аталады. қиық конустың бір табанының қайсыбір нүктесінен екінші табан жазықтығына түсірілген перпендикуляр қиық конустың биіктігі деп аталады.Конустың бүйір бетінің ауданының формуласы бойынша
Sқ.кон.б.б. = πl(R+r)
Қиық конустың бүйір бетінің ауданы табан шеңберлерінің қосындысының жартысы мен жасаушының көбейтіндісіне тең
Sқ.кон.б.б. = *l=*l
Sқ.кон.б.б. = πl(R+r)+πR2+πr2
Мұндағы l-жасаушы, ал r – мен R — конус табандарының радиустары.

Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   12




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет