9.3А Бөлім: «Тригонометрия»
Оқу мақсаты
Тригонометрия формулалары
9.2.4.7 Тригонометриялық функциялардың қосындысы мен
айырымының көбейтіндіге және көбейтіндісін
қосындыға немесе айырымға түрлендіру
формулаларын қорытып шығару және қолдану.
9.2.4.8 Тригонометриялық өрнектерді тепе-тең түрлендіруді
орындау.
Бағалау критерийі
Білім алушы
Ойлау дағдыларының деңгейі
Тригонометриялық функциялардың қосындысы мен
айырымының көбейтіндіге түрлендіру формулаларын
қолданады;
Тригонометриялық функциялардың көбейтіндісін
қосындыға немесе айырымға түрлендіру
формулаларын қолданады;
Тригонометриялық өрнектерді тепе-тең түрлендіруді
орындайды.
Қолдану
1-тапсырма
Өрнектерді ықшамдаңыз:
sin172,50 sin 52,50
cos172,50 cos 52,50 ;
sin 1324 cos 724 ;
cos1650 cos 2850 ;
cos12x cos 8x cos 4x . sin12x sin 8x sin 4x
Дескриптор: Білім алушы
тригонометриялық функциялардың қосындысы көбейтіндіге түрлендіру формуласын қолданады;
37
тригонометриялық функциялардың көбейтіндісін қосындыға немесе айырымға түрлендіру формуласын қолданады;
2-тапсырма
Теңбе-теңдікті дәлелдеңіз:
-
1)
|
sin120t sin(80t)
|
|
ctg 20t ;
|
cos120t cos80t
|
|
|
|
|
sin m sin n
|
m n
|
2)
|
|
tg
|
|
|
|
.
|
cos m cos n
|
|
|
|
|
|
2
|
|
|
Дескриптор: Білім алушы
тригонометриялық функциялардың қосындысы мен айырымының
көбейтіндіге түрлендіру формулаларын қолданады;
тригонометриялық өрнектерді тепе-тең түрлендіруді орындайды.
38
9.4В Бөлім: «Ықтималдықтар теориясының элементтері»
Бағалау критерийі
Білім алушы
Ойлау дағдыларының деңгейі
Кездейсоқ оқиға анықтамасын қолданады;
Ақиқат оқиға анықтамасын қолданады;
Мүмкін емес оқиға анықтамасын қолданады;
Тең мүмкіндікті оқиғалар анықтамасын
сәйкестендіреді;
Қарама – қарсы оқиғалар анықтамасын
сәйкестендіреді;
Білу мен түсіну
1-тапсырма
Оқиға түрлерін анықтамаларымен сәйкестендіріңіз:
Мүмкін емес оқиға
|
Сынау жүргізілгенде оқиға міндетті түрде пайда болатын оқиға
|
|
|
Кездейсоқ оқиға
|
Сынау жүргізілгенде пайда болу мүмкіндігі жоқ оқиға
|
Оқиға түрлерін мәтіндермен сәйкестендіріңіз:
Ақиқат оқиға
|
Айгүлдің сандықшасында тек ақ моншалар бар . Сара кез келген
|
|
моншақты таңдап алса, онда ол ақ моншақ болады.
|
Мүмкін емес оқиға
|
Мараттың қолында бес түрлі шар бар: ақ, сары, қызыл, көк, жасыл.
|
|
Інісі шарлардың кез келгенің араластыра отырып біреуін алса,
|
|
онда оның ақ, сары, қызыл, көк немесе жасыл шар болуы мүмкін
|
|
оқиға.
|
39
Кездейсоқ оқиға
|
Алты жақты кубты лақтырғанда 7 санының түсу оқиғасы.
|
|
|
Дескриптор: Білім алушы
Оқиға түрлерінің анықтамасын біледі;
Оқиға түрлерін анықтамасымен сәйкестендіреді;
Оқиға түрлерін мәтіндермен сәйкестендіреді;
2-тапсырма
Екі оқиғалардың пайда болу мүмкіндіктерінің анықтамасымен сәйкестендіріңіз:
1)
|
Үйлесімді оқиғалар
|
a)
|
сынау нәтижесінде бірі пайда болып, екіншісі пайда
|
|
|
болмайтын оқиға болса;
|
|
|
|
|
|
|
b)
|
сынау нәтижесінде бірінің пайда болуы екіншісінің пайда
|
|
|
болуын жоққа шығармайтын оқиға болса;
|
2)
|
Үйлесімсіз оқиғалар
|
c)
|
сынау нәтижесінде екі оқиғаның пайда болу мүмкіндігі
|
|
|
|
бірдей оқиға болса;
|
3)
|
Тең мүмкіндікті
|
d)
|
сынау нәтижесінде ешуақытта пайда болмайтын оқиға
|
оқиғалар
|
|
болса;
|
|
|
e)
|
оқиғалардың толық тобын құрайтын екі үйлесімсіз
|
|
|
|
оқиғалар болса;
|
4)
|
Қарама-қарсы оқиғалар
|
f)
|
ықтималдылығы 1-ге тең болатын кез келген оқиға
|
Дескриптор: Білім алушы
үйлесімді оқиғаларды анықтамасымен сәйкестендіреді;
үйлесімсіз оқиғаларды анықтамасымен сәйкестендіреді;
қарама-қарсы оқиғаларды анықтамасымен сәйкестендіреді;
тең мүмкіндікті оқиғаларды анықтамасымен сәйкестендіреді.
40
9.4В Бөлім: «Ықтималдықтар теориясының элементтері»
Ықтималдықтар теориясының негіздері
Бағалау критерийі
Білім алушы
Ойлау дағдыларының деңгейі
Ықтималдықтың классикалық анықтамасын
қолданады;
Ықтималдықтың классикалық анықтамасын
қолданады
Қолдану
1-тапсырма
Мараттың қолында бес түрлі 15 шар бар. Олардың 2-уі ақ, 4-уі сары, 1-уі қызыл, 5-уі көк, 3-уі жасыл. 2 жасар інісінің көк шарды таңдап алу ықтималдылығы қандай?
Дескриптор: Білім алушы
ықтималдылық анықтамасын қолданады;
ықтималдылығын анықтайды.
2-тапсырма
Шолпанға анасы қобдишаға салынған білезіктерді қарамай таңдап алуға ұсыныс жасады. Қобдишада қызыл түсті-2, жасыл түсті-3, ақ түсті -5 әдемі білезіктер бар еді. Шолпанның ақ түсті білезікті таңдап алу ықтималдылығы қандай?
Дескриптор: Білім алушы
барлық білезік санын анықтайды;
ықтималдылық анықтамасын қолданады;
ықтималдылығын табады.
41
9.4В Бөлім: «Ықтималдықтар теориясының элементтері»
Ықтималдықтар теориясының негіздері
Оқу мақсаты
9.3.2.4 Ықтималдықтың статистикалық анықтамасын білу;
Бағалау критерийі
Білім алушы
Ойлау дағдыларының деңгейі
Ықтималдықтың статистикалық анықтамасын
жазады;
Салыстырмалы жиілік анықтамасын жазады;
Ықтималдықтың статистикалық анықтамасын
қолданады
Қолдану
1-тапсырма
Сөйлемдерді толықтырыңыз:
оқиғасының ________ санының барлық ____________санына қатынасы салыстырмалы жиілік деп аталады.
Салыстырмалы жиіліктер маңында топталған және белгілі шарттар тобы орындалғанда әрі сынаулар саны шексіз өскен сайын, салыстырмалы жиіліктен өте аз ауытқитын тұрақты сан -
__________ .
Дескриптор: Білім алушы
2-тапсырма
Мектептің тігіншілік үйірмесі 1100 дана түймеге тапсырыс берді. Тапсырысты тексеріп қабылдау кезінде 250 түйменің ішінде ақауы бар 3 дана бар болып шықты. Ақауы бар түйменің орнын толықтыру үшін ең аз дегенде қанша түймеге тапсырыс беру керек?
Дескриптор: Білім алушы
ықтималдылық анықтамасын қолданады;
ақауы бар түймелердің бар болу ықтималдылығын анықтайды;
барлық түймелердің ішінде мүмкін болатын ақауы бар түймелер санын анықтайды;
тапсырыс берілетін түймелер санын табады.
3-тапсырма
42
Атқыш 75 рет оқ атқанда, нысанаға дәл тигізудің статистикалық ықтималдылығы 0,6-ға тең болды. Атқыш нысанаға неше рет дәл атты?
Дескриптор: Білім алушы
ықтималдықтың статистикалық анықтамасын қолданады;
дәл тигізу санын табады.
43
9.4В Бөлім: «Ықтималдықтар теориясының элементтері»
Ықтималдықтар теориясының негіздері
Оқу мақсаты
9.3.2.5 Геометриялық ықтималдықты есептер шығаруда
Бағалау критерийі
Білім алушы
Ойлау дағдыларының деңгейі
Геометриялық ықтималдықты есептер шығаруда
қолданады
Қолдану
1-тапсырма
Қабырғасы 6R-ға тең шаршылар болатын сымнан тор жасалған. Радиусы R–ге тең шарды осы тор ішіне лақтырғанда, шардың торға тиіп кетпеу ықтималдылығы қандай?
Дескриптор: Білім алушы
шаршы қабырғаларынан шардың радиусынан артық қашықтықта болатын екінші шаршының ауданың табады;
геометриялық ықтималдықтың анықтамасын қолданады;
ықтималдылықты табады.
2-тапсырма
Екі адам сағат 14 пен 15-тің арасында белгілі бір жерде кездесуге уәделеседі. Бірінші келген адам екіншісін 25 минут күтіп, содан кейін кететін болған. Екеуінің кездесу ықтималдылығын табу керек.
Дескриптор: Білім алушы
декарттық координата жүйесінде екі жолаушының уақытын белгілейді;
кездесудің орындалу шартын анықтайды;
геометриялық ықтималдықтың анықтамасын қолданады;
ықтималдылығын табады.
44
Достарыңызбен бөлісу: |