Аналитическая геометрия



бет15/16
Дата02.02.2023
өлшемі2,29 Mb.
#64583
1   ...   8   9   10   11   12   13   14   15   16
Байланысты:
AnGeom 2

Вариант 27



  1. Вычислить координаты точки пересечения перпендикуляров, восстановленных из середин сторон треугольника, вершинами которого являются точки A(2; 3), B(0; -3), C(5; -2).

  2. Написать уравнение прямой, отсекающей на оси отрезок, величина которого равна 3, и наклоненной к оси под углом 135º.

  3. Вычислить тангенс острого угла между прямыми , .

  4. На прямой найти такую точку, у которой абсцисса в десять раз больше ординаты. Найти расстояние от найденной точки до прямой .

  5. Дан тетраэдр с вершинами A(2; 0; 1), B(0; 0; 3), C(1; 2; 1), D(4; 3; 2). Найти угол между гранями ABC и ACD. Составить уравнение плоскости, проходящей через вершину D параллельно грани ABC.

  6. Составить уравнение плоскости, проходящей через точку M1(3; 5; 1) и M2(4; 2; 3) и параллельной вектору . Найти расстояние от точки P(5; -2; 4) до построенной плоскости.

  7. Составить уравнение плоскости, проходящей через точки M1(1; 1; 1), M2(2; 3; 4) и перпендикулярной плоскости . Полученное уравнение привести к уравнению в отрезках и построить.

  8. Написать каноническое уравнения прямой .

  9. Составить уравнение прямой, проходящей через точку B(3; 4; -4) параллельно прямой . При каком m построенная прямая будет перпендикулярна прямой .

  10. Найти проекцию точки M(-1; -1; 0) на плоскость .

  11. При каких значениях A и B прямая лежит на плоскости . При А=1, В=-2. Найти угол между прямой и плоскостью.

Вариант 28



  1. Даны вершины треугольника A(2; 1), В(0; 7), С(-4; -1). Найти уравнение его медиан и точку их пересечения.

  2. Составить уравнение прямой, которая проходит через точку M1(2; -5) и отсекает отрезок втрое больше, чем на оси ординат (считая каждый отрезок, направленным от начала координат).

  3. Даны уравнения сторон треугольника (АВ), (ВС), (АС). Найти угол между высотой, проведенной из вершины В и прямой, проведенной через точку С параллельно АВ.

  4. Дана прямая . Найти уравнение прямой, параллельной данной и отстоящей от нее на расстоянии четырех единиц.

  5. Плоскость α проходит через точку Р(2; 1; 1) и отсекает на осях ох и oy отрезки, соответственно равные 4 и -6. Плоскость β задана уравнением . При каких m и n плоскости будут параллельны?

  6. Плоскость α проходит через точку M1(5; 3; 2) и параллельна двум векторам и . Плоскость β проходит через точку Р1(1; 1; 1), Р2(2; 3; 2) и Р3(3; 4; 2). Найти угол между плоскостями α и β.

  7. Вычислить расстояние между плоскостями и .

  8. Написать каноническое уравнения прямой .

  9. Найти точку симметричную точке С(-1; 2; 0) относительно прямой , , .

  10. При каком n плоскость будет параллельна прямой ? При найти точку пересечения и угол между прямой и плоскостью.

  11. Прямая α проходит через точку M1(3; 4; 7) и M2(-1; 3; 3). Прямая β проходит через точку Р(3; 2; -1) параллельно прямой . Найти угол между прямыми α и β.



Достарыңызбен бөлісу:
1   ...   8   9   10   11   12   13   14   15   16




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет