«Транспортная наука и инновации», посвященная Посланию Президента РК Н.А. Назарбаева
«Нҧрлы жол - путь в будущее»
Материалы XXXIX Республиканской научно-практической конференции студентов
253
abrasive forces and mechanical shock, or in the intermediate (protected) insulation [7]. Heat-
insulating refractory materials with a density less than 1 g / cm
3
- it is lightweight thermal
insulation. Their production is carried out in three ways: using burnable additives, the use of
chemical blowing agents, and an introduction to the mass of a mixture of clay with chamotte
addition, interacting with the release of gaseous products. Production of lightweight refractories
way burnout agents is the most simple and common. As burnout agents introduced into the blend
are: sawdust, lignin, low-ash, anthracite or other combustibles. Composition of the charge for the
manufacture of lightweight fireclay refractories method burnout agents following: sawdust 30-
45%, 20-30% and fireclay plastic clay binder 35-40% [8]. The charge was carefully treated in
runners and humidify up to 25-30%. Processed and damp on the runners mass was passed
through a belt press and put in storage for maturing, which lasts at least two days. Thereafter the
mass is recycled in a belt press with a mouthpiece so as to obtain the necessary raw form, which
is then compressed again in special presses. Drying of raw tunnel drying lasts for about 30-40 s
at 100-120 ° C. Roasting raw produce in batch or tunnel kilns at a temperature of 1430-1450 ° C.
In the manufacture of insulating refractory ceramic honeycomb structure is usually used
superfine mineral powders (e.g., Al2O3, MgO, ZrO
2
) and liquid foam [9]. Upon drying the
formed weight of foam liquid phase evaporates and forms solid foam, which is then subjected to
firing (to harden). The average density of such a foam ceramics depends on the porosity of the
material for example based on AI2O3; a porosity of 30%, it is equal to 1200 kg / m
3
and a
porosity of 85% - 600 kg / m
3
. Coefficient of thermal conductivity basic designs of such
materials is 0.03-0.05 W / (m • K).
The category of light refractory materials used as thermal insulation of various aggregates
are materials whose main components are mixtures of porous lightweight aggregates certain
cereal composition with a content of A1
2
0
3
of from 15 to 99% hydraulic binder and [10]. As an
example, Table 1 shows the properties of light weight, depending on the variation of
composition and preparation conditions.
Table 1 - Properties of refractory lightweights
Chemical composition, %
The
density
after
baking
at 800
° C, g /
cm
3
Compressive
strength, N / mm
2
Application
temperature,
° C
Thermal
conductivity
at an
average
temperature
of 500 ° C
W / m • K
Al
2
O
3
SiO
2
Fe
2
O
3
CaO MgO
After 3
days,
after
formation
After
calcination
at 800 ° C
9-20
40-
60
<10 <30
-
1,2
7-15
6-10
1100
0,2
9-20
40-
60
<10 <30
-
0,6
1-3
1-2
1100
0,16
9-20
40-
60
<10 <30
-
0,7
2-5
1,5-3
1100
0,17
9-20
40-
60
<10 <30
-
0,8
3-7
2-4
1100
0,18
9-20
40-
60
<10 <30
-
1,0
10-16
5-8
1100
0,22
9-20
40-
60
<10 <30
-
1,1
17-22
8-12
1100
0,25
40-60
30-
45
<3 8-13 0,1-0,5
1,4
20-25
8-15
1350
0,35
«Транспортная наука и инновации», посвященная Посланию Президента РК Н.А. Назарбаева
«Нҧрлы жол - путь в будущее»
Материалы XXXIX Республиканской научно-практической конференции студентов
254
70-75
0,2-
0,5
<0,3 5-7
20-22
1,45
12-15
7-10
1550
0,85
94-97
0,1-
0,2
<0,2 5-7 0,1-0,15
1,5
15-20
8-10
1600
0,8
Widespread in the production: fireproof mullite-siliceous insulating panels. This is durable
and technologically insulating material. It is made of refractory fibers of mullite, which is
produced by melting in an electric furnace, the oxides of aluminum and silicon with the
subsequent formation of blown fibers. Physical and chemical properties: apparent density of not
more than - 340 kg / m3; thermal conductivity at 600 ° C, not more than - 0.23 W / m • K,;
application temperature - 1150 ° C. The chemical composition of the material: on the AI2O3
weight fraction calcined substance within 50%; mass fraction of Al2O3 + SiO2, on the calcined
product at least 47%. Refractory insulating plates: mullite-siliceous chemically resistant to
alkalis and acids. Such plates are designed for working lining layer of gas and electric furnaces
the thermal service temperature up to 1200 ° C and pressures of coolant flow rate of 40 m / s in
the furnace. Refractory insulating mullite-siliceous products are used as insulation, compensating
material for blast furnaces, air heaters, thermal insulation, heating, vertical section, cylindrical
and other types of furnaces, metal wire, shelters troughs for pig iron and slag, soaking pits,
warming the head of ingots and castings from iron and steel and other objects; as a working
(unprotected) lining layer not exposed melts, corrosive gas environments, abrasive forces,
mechanical shocks and gas flows at a speed exceeding 10 m / s; and intermediate (protected)
layer lining.
Higher rates of fire-proof compared with silica are corundum lightweight products that are
produced by a combination of methods burnable additives and chemical pore formation [11].
Thus, the foamed polystyrene is used as a burnable additives and forms macro pores and micro
pores formed by the decomposition of calcium carbonate was added to the batch. The resulting
wherein the sintering additive is CaO.
One widely used method for imparting industrial materials is the introduction of a porous
structure of the porous filler. Exfoliated vermiculite has a small bulk density (80-120 kg / m3),
low thermal conductivity (0,04-0,12 W / m • K), a relatively high melting point (1240-1430 ° C),
is chemically inert, durable, Environmentally safe, which characterizes it as a promising material
for use as a unique porous filler in the manufacture of high temperature insulation materials.
Refractory heat-insulating material based on vermiculite less than 1580 ° C, however they are
not refractory, but since their operation temperature exceeds 1000 ° C, this is high temperature
materials.
Vermiculite thermal insulation products on the clay binder composed of exfoliated
vermiculite (porous filler), refractory clay, possibly with the addition of non-plastic refractory
material is chamotte dust from electric, etc. (Refractory aggregate). By varying the content of
components and material composition of the ligaments and the refractory aggregate, in relation
to the terms of the production of refractory high-temperature insulation materials obtained.
Designed insulating vermiculite products at low apparent density have a high thermal insulation
materials for strength (σ
cs
= 0,9-2,4 MPa at ρ = 400-1000 kg / m3), which facilitates their
transport, installation and operation in thermal units. When comparable with known high-
temperature insulating material of the apparent density of these products have a substantially
lower heat conductivity at 200 ° C the thermal conductivity of products with a bulk density of
from 400 to 1000 kg / m3 in the range 0,09-0,23 W / (K • m) , products of fibrous insulation
materials - within 0.12-0.15 W / (m • K), diatomite products - 0.2-0.3 W / m • K, fireclay ultra
lightweight (ρ
apparent
= 400 kg / m3 ) - 0,18-0,22 W / m • K.
In addition to the refractory heat insulator made flame arrestors - fire protection devices,
which set fire hazard process or pipeline, free flowing stream gas steam-air mixture or liquid
through the flame suppressants and help you locate a flame [7]. Locate the explosion - which
«Транспортная наука и инновации», посвященная Посланию Президента РК Н.А. Назарбаева
«Нҧрлы жол - путь в будущее»
Материалы XXXIX Республиканской научно-практической конференции студентов
255
means to prevent the spread of flame on technological communications. Flame arrestors, free
flow of steam is passed or gas mixture, but prevent the spread of flame. They are installed on the
flare stack for discharging combustion gases into the atmosphere, before the burners and
communications. The effectiveness of the flame arrester depends mainly on the diameter of
flame retardant channels and weakly depends on the length and material of the walls of these
channels. With decreasing diameter of the flame retardant channel increases the surface per unit
weight of the reaction mixture, thereby increasing the heat losses from the combustion zone. At
the critical diameter of the reaction rate is reduced so that the further spread of the flame stops
completely. By the same principle apply flame arresters are designed to extinguish burning
liquids spilled.
In addition to the thermal conductivity and fire resistance, an important indicator for
refractory heat insulator and flame arrester is a strength, which at low density (ie high porosity)
is significantly reduced. Strength is defined as the ability of materials to resist the destructive
action of external forces that cause internal stresses in the material and deformation. This
insulating material has a property dependent on the structure of the core strength (solid
component) and the porosity of the material. If the material has a structure with large pores
uneven then it is less durable than a material with small pores. In addition, the durability depends
on the chemical resistance of the coating insulating material (this factor should be carefully
considered when selecting materials for thermal insulation coatings production facilities).
Variation of the phase composition of the material contributes to the strength, for example,
introduction of silicon carbide [12].
Significant increase of this characteristic in thermal insulation materials noted for the use
of heat insulators wollastonite CaSiO
3
. Ceramic materials, which include wollastonite, have low
thermal conductivity with sufficient mechanical strength and non-wetting to molten some
nonferrous metals, making them ideal for the economical production of injection and
transportation of non-ferrous metals such as aluminum or [13].
They also differ in high shrinkage during firing. In particular wollastonite siliceous
introduced into structural materials that are composites that combine quartz filler with different
granulometry and a binder, consisting also essentially of SiO
2
, and a certain amount of alkaline
compounds acting as mineralizers. Such a material has heat resistance (up to 1000 ° C), specific
gravity of 200-400 kg / m
3
and a thermal conductivity coefficient in the range of 0,08-0,11 W /
m • K. Flame retardant material is increased by the introduction into its composition of
wollastonite [14]. Furthermore, the crystals are acicular wollastonite with planes around the
generators associates constituting the matrix of the basic structure, so mobility relative to one
another is reduced. This leads to a drastic decrease in the shrinkage on drying and operation. For
this reason, the use of wollastonite in the compositions used for the flame retardant structures
and cables, to avoid delamination of these coatings at high temperatures due to a sharp reduction
in the degree of shrinkage and cracking. As shown in the previous section, wollastonite is
connection system SiO
2
-CaO, which in conjunction with Al
2
O
3
is the basis for preparing various
cements and concretes.
Fibrous materials thermal insulation purposes on the basis of the system CaO-SiO
2
-Al
2
O
3
are both naturally occurring in the form of basalt, and produced artificially by different
technological schemes [15, 16]. Develop refractory cements, and based on them get heat-
resistant concrete [17, 18]. Insulating concrete is prepared based on cement and autoclaved. For
example, in the manufacture of cement less porous concrete autoclaved as silica component is
applied mudstone at the following component in the cellular-concrete mix,% lime 10 - 25;
mudstone, 75 - 90; aluminum powder above 100% of lime and water to clay stone and optimal
yield a mixture [19]. Using as an argillite silica component synthesized cementing material with
increased strength and water resistance of the material. Processing curable aerated mixture in an
autoclave under saturated steam pressure of 12 bar and a temperature of 190 degrees Celsius (in
the average of the technology applied) allows to predict the magnitude of the material forming
«Транспортная наука и инновации», посвященная Посланию Президента РК Н.А. Назарбаева
«Нҧрлы жол - путь в будущее»
Материалы XXXIX Республиканской научно-практической конференции студентов
256
the micro and macro pores and their distribution over the volume of the casting and, hence, the
main physical, mechanical and thermal parameters of aerated concrete or gas silicate.
Getting all the above discussed materials associated with long-term treatment with
mixtures of charge (up to 20-40 hours) at high temperatures (not below 1000 ° C). Preliminary
stages of preparation, including mixing, hydration, molding, pre-drying and other operations of
the process, make the process of long-time and energy-consuming.
THE LIST OF THE USED LITERATURE
1
Мержанов
А.Г.,
Боровинская
И.П.
Самораспространяющийся
высокотемпературный синтез. // ДАН СССР. Т. 204. № 2. 1973. - С. 366 - 370.
2 Коидзуми М. Химия синтеза сжиганием. - М.: Мир. 1998.
3 Мержанов А.Г. Самораспространяющийся высокотемпературный синтез // ДАН
СССР. Т. 204. № 2. 1972. - С. 416- 420.
4 Боровинская И. П., Лорян В. Э. Самораспрастраняющиеся процессы образования
твердых растворов в системе цирконий – азот. // ДАН СССР. Т. 231. 1976. № 4. - С. 911 -
914.
5 Хайкин Б.И., Мержанов А.Г. О горении веществ с твердым реакционным слоем. //
ДАН СССР. Т. 173. № 6. 1967. - С. 1382 - 1385.
6 Алдушкин А.П., Мержанов А. Г. Безгазовое горение с фазовыми превращениями. //
ДАН СССР. Т. 236. № 5. 1977. – С. 1133 - 1136.
7 Зенин А.А., Мержанов А.Г., Персисян Г.А. Структура тепловой волны в некоторых
процессах СВС. // ДАН СССР. Т. 250. № 4. 1980. - С. 880 - 884.
8 Мержанов А.Г. Саморастпространяющийся высокотемпературный синтез: двадцать
лет поисков и находок. / Предпринт ИСМАН. Черноголовка. 1989. - С 50.
9 Хайнике Т. Трибохимия – М.: Мир. 1987. – С. 584.
10
Новиков И.И. Дефекты кристаллического строения металлов. – М.:
Металлургия. 1983. - С. 232.
11
Барамбойм Н.К. Механохимия высокомолекулярных соединений. – М.:
Химия. 1971. – С. 363.
12
Аввакумов Е.Г. Механические методы активации химических процессов. –
Новосибирск: Наука. 1986. – С. 304.
13 П.Ю Бутягин. Проблемы и перспективы развития механохимии // Успехи хими и.
– Т.63, №12, 1994. – С. 1031-1043.
14
Мукасьян А.С. Закономерности и механизм горения кремния и бора в
газообразном азоте. Дисс.канд.физ.-мат.,.наук.ОИХФ АН СССР, Черноголовка,1985
15
Левашов Е.А., Питюлин А. Н., Мержанов А. Г., Андреев В.А., Сизов Р.А.,
Хавский Н.Н. Исследование СВ-синтеза сплавов группы СТИМ в ультразвуковом поле. /
Предпринт ОИХФ АН СССР. Черноголовка. ДСП. 1987.
16
Хайнике Т. Трибохимия – М.: Мир. 1987. – С. 584.
17
Новиков И.И. Дефекты кристаллического строения металлов. – М.:
Металлургия. 1983. - С. 232.
18 Вьюшков Б.В., Левашев Е.А., Ермилов А.Г., Питюлин А.Н., Боровинская И.П.,
Егорычев К.Н. Об особенностях влияния предварительной механической активации
шихты на параметры СВС-процесса, структуру и свойства многокомпонентного кермета
марки СТИМ-5 // Физика горения и взрыва. – 1994. –Т.30,№5. – С.63-67.
19 Корчагин М.А., Григорьева Т.Ф., Бахонов Б.Б., Шарафутдинов М.Р., Баринова
А.П., Ляхов Н.З. Твердофазный режим горения в механоактивированных СВС-ситемах. I.
Влияние продолжительности механической активации на характеристики процесса и
состав продуктов горения // Физика горения и взрыва. – 2003. – Т.39,№1. - С. 51-59.
«Транспортная наука и инновации», посвященная Посланию Президента РК Н.А. Назарбаева
«Нҧрлы жол - путь в будущее»
Материалы XXXIX Республиканской научно-практической конференции студентов
257
СЕКЦИЯ №9
ИННОВАЦИОННЫЕ ПОДХОДЫ В ОРГАНИЗАЦИИ ПЕРЕВОЗОЧНОГО
ПРОЦЕССА
АСТАНА-КӚКШЕТАУ ЖОЛ БАҒЫТЫНДАҒЫ ПОЙЫЗДЫҚ ЖҦМЫС
ТЕХНОЛОГИЯСЫ
Жұмаберген З. – студент (Алматы қ., ҚазККА)
Кобдиков М. А., д.т.н., профессор (Алматы қ., ҚазККА)
Поезд диспетчерінің басты мақсаты-поездардың кесте бойынша қозғалуын
қамтамасыз ету,кезекшілікке шықпастан бҧрын, жоспарлық кеңесте поездың диспетчері
бір ауысымдық
-Ақмола, Кокшетау станцияларының тҥйінші бойынша телімнен кетіп келетің
-вагондар ды тапсыру жҽне жию бойынша реттеуші -ҽр телімнің станциясындағы
тиеу мен тҥсірудің кҿлемі.
-телімдегі нақты жағдайдан шыққан қосымша тапсырмалар.
Кезекшілікке шыққан поезд диспетчері телімдегі поездардың телімдегі
Ауысымдағы жоспарының сҽтті ҿтуі ҥшін телім дисептчері 4-6 сағаттық
Ағымдық жоспарлауды жҥзеге асырмастан бҧрын диспетчер қолайсыз жағдайларды,
яғни Кестеге жасалған қозғалыстарды салу ҥшін диспетчер біріншіден ҽр Поездардың
телімдегі жағдайын уақытпен ескере отыра, жасалған жоспарды ДПКС кірме жолы ЭО-қа
қосылған №17 бағыттамалы бҧрма Бірқалыпты тапсыру ҿлшемі 2 ваганнан, маневрлік
жылжу жылдамдығы Кірме жолы №6 сақтандарғыш тҧйығымен жабдықталып, темір
жолдың қҧрастырушылар Вагондарды бекіту реті мен маневрлік жҧмысты атқару
жолдардың
Электровоздан басқа кірме жолдардың станцияларына телімдегі Кезекшілікті
тапсырып отырған поезд диспетчерінің жасалған қазғалыстар бар Кезекшілікті тапсырып
отырған диспетчер міндетті тҥрде сол аралықта жасалған
Жоспар бағыты бойынша қҧрамының орналасуы, вогондар
Телімдегі қар тоқтату реті: Дауылды жел, боран, кенеттен температураның
тҿмендеуі сияқты ауа райының Бҧл тҽртіп «қауіпті, қолайсыз жҽне гидрометиорологиялық
жағдайлардағы поездардың ҿту Қармен кҥресу жҧмыстарының ҧйымдастырылуы
негізінде, жылда. Ҽзірленіп тасымалдау бҿлімшесінің Қар тоқтату қауырт жоспары
келесіні ескереді.
-қысқы мерзімдегі кадрлар мен шаруашылық жҧмыстарын пайдаланудың қауырт
штабының
-тасымалдау бҿлімшесінің станциялары мен телімнің аса қауіпті жерлері. -қозғалыс
жылд-н қажет етеін ж/ автотерб-ге ҧшыраған телімнің тізбегі -қартазалағыш
техникасының схемада орналасуы. -пневмоҥрленелі орталықтандырылған бағыттамалары
бар станциялар тізбегі.
-қарды тоқтату жҧмыстарын тепловоздармен қамтамасыз ету жоспары. -
автотранспорт жҽнебульдозерлердің турақтану схемасы. -поездардың тҧрақтануына
тыйым салынған бҿлек пунктер мен жолдардың тізбегі.
-жҧмыс кҥштерін тасымалдау бҿлімшесінің жабу схемасы.
-локомотив шаруашылығының жҧмысының ҧйымдастырылуы.
-тҥйіспе желісін қалпына келтіру жҧмыстарын ҧйындастырады.
-қҧралдарды қалпына келтіру ҽрекетін жоспарлады.
-шаруашылық сигнал беру жҽне байланыс жҧмыстарын ҧйымдастырады.
3>30>10>30>10>30>10>30>10>30>10>30>10> Достарыңызбен бөлісу: |