ПРОКАРИОТИЧЕСКАЯ
клетка
|
ЭУКАРИОТИЧЕСКАЯ
клетка
|
Ядра нет
|
Оформленное ядро
|
Наследственная структура клетки – генофор
|
Наследственные структуры ядра клетки – хромосомы
|
Генофор располагается непо-средственно в цитоплазме
|
Хромосомы локализуются в
кариоплазме ядра, от цитоплазмы
отграничены ядерной оболочкой
|
Генофор – это ДНК
|
Хромосомы – это ДНП;
ДНП =ДНК+ белки
|
Генофор имеет форму кольца
|
Хромосомы – форму палочек
или нитей (хроматин)
|
ЦИТОПЛАЗМА
|
Органоиды отсутствуют, кроме рибосом
|
Присутствуют различные органоиды клетки
|
Цитоскелета нет
|
Цитоскелет характерен
|
Циклоз не наблюдается
Цитоплазматическая наследственность обусловлена плазмидами
|
Циклоз происходит
Цитоплазматическая наследственность обусловлена ДНК, находящимися в митохондриях и пластидах
|
ПЛАЗМА-
ЛЕММА
|
Цитоплазматическая мембрана образует впячивания – мезосомы
|
Мезосомы отсутствуют
| ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ КЛЕТКИ
Клетка – основная структурная и функциональная единица живых организмов, осуществляющая рост, развитие, обмен веществ и энергии, хранящая, перерабатывающая и реализующая генетическую информацию.
Форма клетки. Различают клетки с изменчивой формой (амёбы, лейкоциты и др.) и клетки, форма которых более или менее постоянна и специфична для каждого типа клеток. Форма клеток зависит от функционального приспособления клеток, поверхностного натяжения и вязкости протоплазмы, механического воздействия прилегающих клеток, ригидности клеточной мембраны.
СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ
Размеры клеток. Размеры клеток колеблются в широких пределах. Диаметр самых мелких животных клеток – до 4 мкм. Однако некоторые клетки можно видеть невооружённым глазом, так как они достигают нескольких сантиметров в диаметре (клетки мякоти плодов, яйца некоторых птиц).
В тканях животных объём клеток определенного вида постоянен и независим от общих размеров тела. Например, клетки почек и печени у быка, лошади и мыши имеют примерно один и тот же размер; различие в величине органа обусловлено числом, а не объёмом клеток. Это правило называют законом постоянного объёма.
ОСНОВНЫМИ КОМПОНЕНТАМИ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ являются:
цитоплазматическая мембрана (плазмалемма);
цитоплазма;
ядро
ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА
Цитоплазматическая мембрана или плазмалемма (лат. membrana – кожица, плёнка) – тончайшая пленка (7–10нм), отграничивающая внутреннее содержимое клетки от окружающей среды, видна только в электронный микроскоп.
По химической организации плазмалемма представляет липопротеидный комплекс – молекулы липидов и белков.
Её основу составляет липидный бислой, состоящий из фосфолипидов, кроме этого, в мембранах присутствуют гликолипиды и холестерол. Все они обладают свойством амфипатричности, т.е. у них есть гидрофильные («любящие воду») и гидрофобные («боящиеся воды») концы. Гидрофильные полярные «головки» липидных молекул (фосфатная группа) обращены кнаружи мембраны, а гидрофобные неполярные «хвосты» (остатки жирных кислот) – друг к другу, что создает биполярный липидный слой. Молекулы липидов подвижны и могут перемещаться в своем монослое или редко – из одного монослоя в другой. Монослои липидов обладают ассиметричностью, т. е. отличаются по составу липидов, что придает специфичность мембранам даже в пределах одной клетки. Бислой липидов может находиться в состоянии жидкого или твердого кристалла.
Вторым обязательным компонентом плазмалеммы являются белки. Многие мембранные белки способны перемещаться в плоскости мембраны или вращаться вокруг своей оси, но не могут переходить с одной стороны бислоя липидов на другой.
Липиды обеспечивают основные структурные особенности мембраны, а белки – её функции. Функции мембранных белков различны: поддержание структуры мембран, получение и преобразование сигналов из окружающей среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах.
Различают несколько моделей строения цитоплазматической мембраны.
①. БУТЕРБРОДНАЯ МОДЕЛЬ (белки – липиды – белки)
В 1935г. английские ученые Даниэли и Даусон высказали идею о послойном расположении в мембране молекул белков (темные слои в электронном микроскопе), которые залегают снаружи, и молекул липидов (светлый слой) – внутри. Длительное время существовало представление о едином трехслойном строении всех биологических мембран.
При детальном изучении мембраны с помощью электронного микроскопа оказалось, что светлый слой на самом деле представлен двумя слоями фосфолипидов – это билипидный слой, причем водорастворимые его участки – гидрофильные головки направлены к белковому слою, а нерастворимые (остатки жирных кислот) – гидрофобные хвосты обращены друг к другу.
Однако уже с середины 60-х годов начали накапливаться факты против унитарной «бутербродной» модели. В частности, по одним данным, не все мембраны имели четкую трехслойную структуру при электронно-микроскопическом исследовании; по другим – значительная часть мембранных белков имела глобулярную структуру, а не ламеллярную, как в постулируемой модели. Наконец, среди многочисленных моделей мембран, предложенных в середине 60-х годов, начали выделяться те, в которых доказывалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками.
② . ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ
В 1972г. Сингер и Николсон описали модель мембраны, которая получила широкое признание. Согласно этой модели молекулы белков не образуют сплошного слоя, а погружены в биполярный липидный слой на разную глубину в виде мозаики. Глобулы белковых молекул, подобно айсбергам, погружены в «океан»
липидов: одни находятся на поверхности билипидного слоя – периферические белки, другие погружаются в него наполовину – полуинтегральные белки, третьи – интегральные белки – пронизывают его насквозь, формируя гидрофильные поры. Периферические белки, находясь на поверхности билипидного слоя, связаны с головками липидных молекул электростатическими взаимодействиями. Но они никогда не образуют сплошного слоя и, по сути дела, не являются белками собственно мембраны, а, скорее, связывают ее с надмембранной или субмембранной системой поверхностного аппарата клетки.
Основную роль в организации собственно мембраны играют интегральные и полуинтегральные (трансмембранные) белки, имеющие глобулярную структуру и связанные с липидной фазой гидрофильно-гидрофобными взаимодействиями. Молекулы белков, как и липиды, обладают амфипатричностью и своими гидрофобными участками взаимодействуют с гидрофобными хвостами билипидного слоя, а гидрофильные участки обращены к водной среде и образуют с водой водородные связи.
③. БЕЛКОВО-КРИСТАЛЛИЧЕСКАЯ МОДЕЛЬ (модель липопротеинового коврика)
Мембраны образованы переплетением липидных и белковых молекул, объединяющихся между собой на основе гидрофильно-
гидрофобных взаимодействий.
Белковые молекулы, как штифты, пронизывают слой липидов и выполняют в составе мембраны функцию каркаса. После обработки мембраны жирорастворимыми веществами белковый каркас сохраняется, что доказывает взаимосвязь между молекулами белков в мембране. По-видимому, эта модель реализуется лишь в отдельных специальных участках некоторых мембран, где требуется жесткая структура и тесные стабильные взаимоотношения между липидами и белками (например, в области расположения фермента Na-К –АТФ-азы).
Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.
Достарыңызбен бөлісу: |